\(\frac{\left(a+b\right)^4}{8}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Từ a4 + b4 \(\ge\)2a2b2 cộng a2 + b2 vào 2 vế

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

Tương tự\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

Từ đó suy ra \(a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2\)

12 tháng 11 2021

Cái cuối là \(a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)nha mình nhầm

13 tháng 6 2019

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)

3 tháng 4 2017

c) Ta có a + b > 1 > 0 (1)

Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)

Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)

Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)

Bình phương 2 vế của (4):  \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)

Mặt khác  \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)

Cộng từng vế của (5) và (6):  \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).

3 tháng 4 2017

1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé

\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=3^{64}-1\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Thực hiện biến đổi tương đương:

\(ab(a^2+b^2)\leq \frac{(a+b)^4}{8}\)

\(\Leftrightarrow 8ab(a^2+b^2)\leq (a+b)^4\)

\(\Leftrightarrow 8ab(a^2+b^2)\leq (a^2+b^2+2ab)^2\)

\(\Leftrightarrow 8ab(a^2+b^2)\leq (a^2+b^2)^2+(2ab)^2+4ab(a^2+b^2)\)

\(\Leftrightarrow (a^2+b^2)^2+(2ab)^2-4ab(a^2+b^2)\geq 0\)

\(\Leftrightarrow (a^2+b^2-2ab)^2\geq 0\)

\(\Leftrightarrow (a-b)^4\geq 0\) (luôn đúng với mọi số thực $a,b$)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b\)

11 tháng 4 2018

Ta có : \(a^4+b^4\ge2a^2b^2\)

Cộng \(a^4+b^4\) vào 2 vế ta đc: \(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\) (1)

Ta có: \(a^2+b^2\ge2ab\)

Cộng cả 2 vế với \(a^2+b^2\) ta đc: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)\(^{_{ }\Rightarrow}\)\(\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{8}\left(a+b\right)^4\) (2)

Từ (1),(2)=> đpcm

1 tháng 3 2020

b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)

\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)

2 tháng 3 2020

f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\left(x^2-2\right)\)

\(=x^2+1-x^2+2\)

\(=3\)

20 tháng 10 2021

Ta có: \(2\left(a^4+b^4\right)-\left(ab^3+a^3b+2a^2b^2\right)\)

\(=\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có đpcm

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

19 tháng 9 2018

Có a+b+c=0
Ta chọn ngẫu nhiên 3 số a=1;b=1;c=-2
\(a^4+b^4+c^4=1^4+1^4+\left(-2\right)^4=18.\)
\(\frac{a^2+b^2+c^2}{2}=\frac{1^2+1^2+\left(-2\right)^2}{2}=3\)
Sai đề rồi nha bạn