Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có a + b > 1 > 0 (1)
Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)
Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)
Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)
Bình phương 2 vế của (4): \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)
Cộng từng vế của (5) và (6): \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).
1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé
\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=3^{64}-1\)
a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
b/ \(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Leftrightarrow0< 1\) (hiển nhiên đúng)
d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(m=n=1\)
e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Xét A = ........ĐK : x\(\ne\)-1 (*)
B=....... ĐK : x\(\ne\)-1 ; x\(\ne\) 3 (**)
a) Ta có : x2-4x+3
\(\Leftrightarrow\)x2 -3x-x+3
\(\Leftrightarrow\)(x -1) (x-3)
.......................
\(\Leftrightarrow\)x=1(thỏa mãn đk (*)
.,,,,,,,,,,,x=3 (thỏa mãn ĐK(*)
Thay x=..... vào A, ta được:................................
...............................................................................
Vậy tai thì A=..... hoặc A =..................
b) Xét B=................... ĐK.............
Ta có x2 -2x-3
= x2--3x+x -3
= (x+1) (x-3)
\(\Rightarrow B=\frac{x+3}{x+1}+\frac{x-7}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x-3}\)
= \(\frac{\left(x+3\right)\left(x-3\right)+x-7+x+1}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2-9+2x-6}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2+2x-15}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1\right)^2-16}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1+4\right)\left(x+1-4\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x+5}{x+1}\)
Vậy B=.......với x\(\ne\)..............
c) +) Tìm x để B= 2
Để B=2 thì \(\frac{x+5}{x+1}\)=2
\(\Leftrightarrow\frac{x+5-2\left(x+1\right)}{x+1}=0\)
\(\Leftrightarrow x+5-2x-2=0\)
........................................................
Vậy để B=2 thì x=...........
TƯƠNG TỰ B=x-1
d) XÉT B=...........ĐK.....................
ĐỂ B>2 THÌ ........................
GIẢI RA
g) Xét........................
Ta có \(B=\frac{x+5}{x+1}=1+\frac{4}{x+1}\)
Vì x\(\in\)Z nên (x+1) \(\in\)Z
Do đó A\(\in\)Z \(\Leftrightarrow\)\(1+\frac{4}{X+1}\)\(\inℤ\)
\(\Leftrightarrow\frac{4}{X+1}\inℤ\)
\(\Leftrightarrow4⋮\left(X+1\right)\)
\(\Leftrightarrow\left(X+1\right)\inƯ\left(4\right)\)
\(\Leftrightarrow\left(X+1\right)\in\hept{\begin{cases}\\\end{cases}\pm1;\pm2;\pm4}\)
Nếu x+1=1\(\Leftrightarrow\)x=0(thỏa mãn ĐK(**); X\(\inℤ\)
.............................................................................................
...............................................................................
Vậy để B nguyên thì x\(\in\hept{\begin{cases}\\\end{cases}}\).......................................................
e) XIN LỖI MÌNH CHỈ BIẾT TÌM GTNN CỦA B VỚI MỌI GIA TRỊ CỦA X
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)