Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy ( _3)1 = _3; ( _3)2 = _9; ( _3)3 = _7; ( _3)4 = _1; ( _3)5 = _3;...
Vậy nên ( _3)4k = _1; ( _3)4k+1 = _3; ( _3)4k+2 = _9; ( _3)4k+3 = _7;
Từ đó suy ra \(999993^{1999}\) có tận cùng là 7; \(555553^{1997}\) có tận cùng là 3. Vậy A có tận cùng là 4, không chia hết cho 5.
Em xem lại đề bài.
bạn vào link này nè,mk lười viết nhắm:
https://olm.vn/hoi-dap/94533.html
\(A=\left(..3\right)^{1999}-\left(...5^{1997}\right)=\left(...3^4\right)^{499}.3^3-\left(...7^4\right)^{499}.7\)
\(A=\left(...1\right)^{499}.\left(...7\right)-\left(...1\right)^{499}.7\)
\(A=\left(...1\right).7-\left(...1\right).7=\left(...7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow A⋮5\)
Tôi giải hơi dài 1 tí , hãy cố gắng đọc:
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
để A chia hết cho 5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số
Ta có :
31999 = (34)499 . 33= 81499.27 = .....7
71997 = (74)499 . 7= 2041499.7 = .....7
vậy A có chữ số tận cùng là 0 nên A chia hết cho 5 .
9999931999 - 5555571997
= ( 9999932)999.999993 - ( 5555572)998.555557
= .......9999.999993 - ........9998.555557
= .........9.999993 - .........1.555557
= .......7 - ........7 = .......0 chia hết cho 5
=> 9999931999 - 5555571997 chia hết cho 5 ( đpcm )
Ta có:
9999931999 = 9999931996 . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )
\(\Rightarrow\) 9999931999 có tận cùng là 7
5555571997 = 555557 . 5555571996 = 555557 . ( 5555574 )499 = 555557 . ( ....1)499
=> 5555571997 có tận cùng là 7
A = 9999931999 - 5555571997
A = ( .....7 ) - ( .....7 )
A= ( .....0)
=> A có tận cùng là 0
=> \(A⋮5\)
Bài 3 :
Cách 1 :
Ta có:
A = 99999311999- 5555571997
= 9999931998 .999993 - 5555571996 . 555557
= (9999932)999 .999993 - (5555572 ) 998 . 555557
=(...9)999 .999993 - (...9)998 .555557
= (...9). 999993 - (...1).555557
=(...7)-(...7) =(...0)
Chữ số tận cùng của A= 9999931999 -5555531997 là 0.
=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.
Ta có :
\(A=999993^{1999}-555557^{1997}\)
\(A=99993^{1998}.99993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\left(......9\right).999993-\left(..........1\right).555557\)
\(A=\left(.....7\right)-\left(...7\right)=0\)
\(\Rightarrow\)Chữ số tận cùng của \(A\) là \(0\)
\(\Rightarrow A⋮5\) \(\rightarrowđpcm\)
~ Học tốt ~
a = ...3^1999-...3^1997 = ...3^1996 . ...3^3 - ...3^1996 . 3
= (...3^4)^499 . ....7 - (...3^4)^499 . 3
= ...1^499 . ...7 - ...1^499 . 3 = ....1 . ....7 - ...1 . 3 = ....7 - ...3 = ....4
=> a ko chia hết cho 5
Hình như đề sai rùi bạn ơi
xin loi
chứng minh \(999993^{1999}-555557^{1997}\)chia hết cho 5