\(⋮5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Ta thấy ( _3)1 = _3; ( _3)2 = _9; ( _3)3 = _7; ( _3)4 = _1; ( _3)5 = _3;...

Vậy nên ( _3)4k = _1; ( _3)4k+1 = _3; ( _3)4k+2 = _9; ( _3)4k+3 = _7; 

Từ đó suy ra \(999993^{1999}\) có tận cùng là 7; \(555553^{1997}\) có tận cùng là 3. Vậy A có tận cùng là 4, không chia hết cho 5.

Em xem lại đề bài.

24 tháng 11 2017

a = ...3^1999-...3^1997 = ...3^1996 . ...3^3 - ...3^1996 . 3

 = (...3^4)^499 . ....7 - (...3^4)^499 . 3

 = ...1^499 . ...7 - ...1^499 . 3 = ....1 . ....7 - ...1 . 3 = ....7 - ...3 = ....4

=> a ko chia hết cho 5

Hình như đề sai rùi bạn ơi

25 tháng 11 2017

xin loi

chứng minh \(999993^{1999}-555557^{1997}\)chia hết cho 5

16 tháng 2 2020

\(999993^{1999}-555557^{1997}=\left(999993^4\right)^{499}.999993^3-\left(555557^4\right)^{499}.555557\)

\(=\left(....1\right)^{499}.999993-\left(.....1\right)^{499}.555557=\left(....3\right)-\left(.....7\right)=\left(.....6\right)\)

16 tháng 2 2020

\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}\right)\)

\(< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\left(20\text{ số hạng}\right)\right)+\left(\frac{1}{60}+\frac{1}{60}+....+\frac{1}{60}\left(20\text{ số hạng}\right)\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

1 tháng 1 2019

Ta có:

 9999931999 =  9999931996  . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )

\(\Rightarrow\) 9999931999 có tận cùng là 7

5555571997 =  555557 . 5555571996 =  555557 . ( 5555574 )499 = 555557 . ( ....1)499

=> 5555571997 có tận cùng là 7

A = 9999931999 - 5555571997 

A = ( .....7 ) - ( .....7 )

A= ( .....0)

=> A có tận cùng là 0

=>  \(A⋮5\)

Bài 3 :

Cách 1 :

Ta có:

A = 99999311999- 5555571997 

   = 9999931998 .999993 - 5555571996 . 555557

= (9999932)999 .999993 - (5555572 ) 998 . 555557

=(...9)999 .999993 - (...9)998 .555557

= (...9). 999993 - (...1).555557

=(...7)-(...7) =(...0)

Chữ số tận cùng của A= 9999931999 -5555531997 là 0.

=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.

13 tháng 2 2016

A = (999993^4.499+3)-(555557^4.499+1)

A = (999993^4.499).999993^3-(555557^4.499).555557

A = (...1).(...7)-(...1).555557

A = (...7)-(...7)

A = (...0) chia hết cho 5 

Vậy A chia hết cho 5

 

 

13 tháng 2 2016

ta có : 31999 = (34)499.3=81.499.27

=31999 có tận cùng là 7

     71997 = (74)499. 7 = 2041499 . 7 = 71997 có tận cùng là 7

Vậy A có tận cùng bằng 0 = A : 5

6 tháng 2 2016

sai đề rồi !

6 tháng 2 2016

ko chia hết

13 tháng 3 2015

Cho mình cái like đó để mình còn có hứng giải tiếp :

1. a. Mọi 574n đều có tận cùng là 1. Vậy 571999=574.499+3=574.499.573=(.....1).(.....3)

                                                                                                   = ......3. Có tận cùng là 3

 b.Mọi 934n đều có tận cùng là 1. Tương tự câu a.

2.

Mọi 9999934n đều có tận cùng là 1.Mọi 5555574n đều có tận cùng là 1.Vậy 9999931999-5555531997=(......1).(.....3)-(......1).(.......3)=0. Có tận cùng là 0 nên chia hết cho5

 

14 tháng 3 2015

a - 3

b - 7

A= 999993^1999 - 55555^1997

   = ............7       -   .............5

==> A CHIA HẾT CHO 5