Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 87 - 218
= (23)7 - 218
= 221 - 218
= 218.(23 - 1)
= 218.(8 - 1)
= 217.2.7
= 217.14 chia hết cho 14 (đpcm)
b) 106 - 57
= 26.56 - 57
= 56.(26 - 5)
= 56.(64 - 5)
= 56.59 chia hết cho 59 (đpcm)
Ta có:
87-218
=221-218
=218x(23-1)
=218x7
=217x14 chia hết cho 14
Vậy 87-218 chia hết cho 14
Tick cho mik nha!!
TA CÓ: \(8^7-2^{18}=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}\)
\(=2^{18}.\left(2^3-1\right)\)
\(=2^{18}.7\)
\(\Rightarrow8^7-2^{18}⋮2,7\) MÀ ƯỚC CHUNG LỚN NHẤT CỦA 2,7 LÀ 1 \(\Rightarrow8^7-2^{18}⋮14\)
Ta có: 87 - 218 = (23)7 - 218
= 221 - 218
= 218 . (23 - 1)
= 218 . 7
= 217 . 2.7 = 217 . 14 (chia hết cho 14)
Vậy 87 - 218 \(⋮\) 14 (đpcm)
Bài 2:
Ta có: \(\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}\)\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)\(\frac{1}{2^6}=\frac{1}{64}\)
Chúc hk tốt nha!!!
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7+...+7^{4n-3}\right)⋮400\forall n\in N\)
\(1.\)Ta có: \(8.10^{2016}+2017=8.10...000+2017=80...000+2017=80...2017\)
Mà tổng các chữ số của số trên là: \(8+0+...+2+0+1+7=18\)chia hết cho 9
\(\Rightarrow\)\(8.10^{2016}+2017\)chia hết cho 9
Vậy \(\frac{8.10^{2016}+2017}{9}\)có giá trị là 1 số tự nhiên.
\(2.\)Ta có: 220 đồng dư với 0 (mod 2) nên \(220^{11969}\)đồng dư với 0 (mod 2)
119 đồng dư với 1 (mod 2) nên \(119^{69220}\)đồng dư với 1 (mod 2)
69 đồng dư với -1 (mod 2) nên \(69^{220119}\)đồng dư với -1 (mod 2)
Vậy A đồng dư với 0 (mod 2) suy ra A chia hết cho 2.
Mặt khác: 220 đồng dư với 1 (mod 3) nên \(220^{11969}\)đồng dư với 1 (mod 3)
119 đồng dư với -1 (mod 3) nên \(119^{69220}\)đồng dư với -1 (mod 3)
69 đồng dư với 0 (mod 3) nên \(69^{220119}\)đồng dư với 0 (mod 3)
Vậy A đồng dư với 0 (mod 3) suy ra A chia hết cho 3.
Ta lại có: 220 đồng dư với -1 (mod 17) nên \(220^{11969}\)đồng dư với -1 (mod 17)
119 đồng dư với 0 (mod 17) nên \(119^{69220}\)đồng dư với 0 (mod 17)
69 đồng dư với 1 (mod 17) nên \(69^{220119}\)đồng dư với 1 (mod 17)
Vậy A đồng dư với 0 (mod 17) suy ra A chia hết cho 17.
Vì 2, 3, 17 là các số nguyên tố \(\Rightarrow\)A chia hết cho 102 (vì 2.3.17 = 102).
\(8^7-2^{18}\\ =\left(2^3\right)^7-2^{18}\\ =2^{21}-2^{18}\\ =2^{17}\cdot\left(2^4-2\right)\\ =2^{17}\cdot14⋮14\)
Vậy \(8^7-2^{18}⋮14\)
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}.1\)
\(=2^{18}.8-2^{18}.1\)
\(=2^{18}\left(8-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.14⋮14\)
\(\rightarrowđpcm\)