Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\right)=\)
\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\)
\(=5\left(1-\dfrac{1}{50}\right)\)
Ta có
\(1-\dfrac{1}{50}< 1\Rightarrow5\left(1-\dfrac{1}{50}\right)< 5\left(dpcm\right)\)
Sửa đề: A=5/2+5/6+...+5/2450
=5(1/2+1/6+...+1/2450)
=5(1-1/2+1/2-1/3+...+1/49-1/50)
=5*49/50<5
C=1-1/2 +1-1/6 +1-1/12 +.............+1-1/2450
=(1+1+1+.........+1)-(1/2 +1/6 +1/12+..............+1/2450)
=49-(1/1.2 +1/2.3 +1/3.4+ ..................+1/49.50)
=49-(1-1/2 +1/2 -1/3+ 1/3- 1/4+............+1/49 -1/50)
=49-(1-1/50) =49-49/50=2401/50
câu 2:
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{2450}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
A=5^1+5^2+5^3+...+5^20
=(5^1+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+(5^2.5+5^2+5^2)+...+(5.5^18+5^2+5^18)
=(5^2+5^1).(5^2+...+5^18)
=30.(5^2+...+5^18)
=>Achia hết cho 6
Ta có:
\(C=5+5^2+5^3+...+5^{20}\)
\(=\left(5+5^2+5^3+5^4\right)+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\)
\(=5.\left(1+5+5^2+5^3\right)+...+5^1\rightarrow7\left(1+5+5^2+5^3\right)\)
\(=5.156+...+5^{17}.156\)
\(=156.\left(5+...+5^{17}\right)=13.12.\left(5+...+5^{17}\right)\)Chia hết cho 5,6,13
ta có :
\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+..+\left(5^{19}+5^{20}\right)\)
\(=5.6+5^3.6+5^5.6+..+5^{19}.6\)
thế nên C chia hết cho 6
C= 5+5^2+5^3+...+5^20.
C=(5+5^2)+(5^3+5^4)...+(5^19+5^20)
C=30+(5^2.5+5^2.5^2)+...+(5^18.5+5^18.5^2)
C=30+5^2.30+...+5^18.30
Vì 30:6 ->30+5^2.30+...+5^18.30->C:6
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)