\(3^{2^{4n+1}}\) +2 luôn là hợp số với mọi SND n

Giups mk với mk đg cầ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2024

\(2^{4n+1}=2.2^{4n}=2.16^n\)

Do \(16\equiv1\left(mod5\right)\Rightarrow2.16^n\equiv2\left(mod5\right)\)

Hay \(2^{4n+1}\) luôn chia 5 dư 2

Do đó ta đặt \(2^{4n+1}=5k+2\)

\(\Rightarrow3^{2^{4n+1}}+2=3^{5k+2}+2=9.3^{5k}+2=9.243^k+2\)

Do \(243\equiv1\left(mod11\right)\Rightarrow9.243^k\equiv9\left(mod11\right)\)

\(\Rightarrow9.243^k_{ }+2\equiv0\left(mod11\right)\)

Hay \(3^{2^{4n+1}}+2\) luôn chia hết 11 với mọi n nguyên dương. Hiển nhiên \(3^{2^{4n+1}}+2>11\) khi \(n>0\) nên nó là hợp số

30 tháng 7 2018

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

29 tháng 10 2020

LEU LEU KO

29 tháng 3 2018

. Ta có :

\(\dfrac{1}{11}>\dfrac{1}{20}\)

\(\dfrac{1}{12}>\dfrac{1}{20}\)

.................

\(\dfrac{1}{19}>\dfrac{1}{20}\)

\(\dfrac{1}{20}=\dfrac{1}{20}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+......+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+.....+\dfrac{1}{20}\)

\(\Leftrightarrow S>\dfrac{1}{20}.10\)

\(\Leftrightarrow S>\dfrac{1}{2}\)

2. \(\dfrac{x}{12}=\dfrac{-1}{24}-\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{x}{12}=-\dfrac{1}{6}\)

\(\Leftrightarrow6x=-12\)

\(\Leftrightarrow x=-2\)

Vậy ...

3. \(\dfrac{2}{5.7}+\dfrac{2}{7.9}+........+\dfrac{2}{19.21}\)

\(=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{19}-\dfrac{1}{21}\)

\(=\dfrac{1}{5}-\dfrac{1}{21}\)

\(=\dfrac{16}{105}\)

29 tháng 3 2018

Mơn bn dthw nhìu nek ><

29 tháng 10 2016

Bài 1:

Có: n2 + n = n(n+1)

Xét: Nếu n lẻ thì n+1 chẵn => n(n+1) chia hết cho 2 (1)

Nếu n chẵn thì n chẵn => n(n+1) chia hết cho 2 (2)

Từ (1) và (2) => n2 + n là hợp số

Bài 2:

a) M = 1 + 32 + 34 + ... + 398

=> 9M = 32 + 34 + ... + 3100

=> 9M - M = 3100 - 1

=> M = \(\frac{3^{100}-1}{8}\)

b) M = 1 + 32 + 34 + ... + 398

= (1+32) + (34+36) + ... + (396+398)

= 10 + 34(1+32) + ... + 396(1+32)

= 10(34+...+396) \(⋮\) 10

29 tháng 10 2016

Bài 2:

a) \(M=1+3^2+3^4+3^6+3^8+...+3^{98}\)

\(\Rightarrow9M=3^2+3^4+3^6+...+3^{100}\)

\(\Rightarrow9M-M=\left(3^2+3^4+3^6+...+3^{100}\right)-\left(1+3^2+3^4+...+3^{98}\right)\)

\(\Rightarrow8M=3^{100}-1\)

\(\Rightarrow M=\frac{3^{100}-1}{8}\)

b) \(M=1+3^2+3^4+...+3^{98}\)

\(\Rightarrow M=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)

\(\Rightarrow M=\left(1+9\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)

\(\Rightarrow M=10+3^4.10+3^{96}.10\)

\(\Rightarrow M=\left(1+3^4+3^{96}\right).10⋮10\)

\(\Rightarrow M⋮10\)

\(A=\frac{12n+1}{30n+2}\)

Gọi d là ƯC ( 12n+1 ; 30n+2 )

Ta có :

\(12n+1⋮d\)\(30n+2⋮d\)

\(\Rightarrow12n+1-30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-50n+4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)

Kết luận : Vậy A là phân số tối giản với moin số nguyên n

19 tháng 4 2021

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

=>(12n+1)chia hết cho d

=>(30n+2) chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>(60n+5) - (60n+4) chia hết cho d

=>              1 chia hết cho d

=>                    1=d

Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s

21 tháng 7 2016

Bài 1:

\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)

=>2 chia hết x+1

=>x+1 thuộc Ư(2)={1;-1;2;-2}

=>x thuộc {0;-2;1;-3}

Bài 2:

Gọi d là UCLN(2n+3;4n+8)

Ta có:

[2(2n+3)]-[4n+8] chia hết d

=>[4n+6]-[4n+8] chia hết d

=>-2 chia hết d =>d={1;2}

với d=2 ps ko tối giản ->d=1

Vậy ps tối giản

17 tháng 10 2018

Neu n la so chan thi n(n+3) chia het cho 2

Neu n la so le thi n+3 la so chan (vi le +le = chan)

                           => n(n+3) chia het cho 2

vay n(n+3) chia het cho 2 voi moi n la stn