\(\varepsilon\)Z các phân số sau có giá trị là 1 số nguyên

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Bài 1:

\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)

=>2 chia hết x+1

=>x+1 thuộc Ư(2)={1;-1;2;-2}

=>x thuộc {0;-2;1;-3}

Bài 2:

Gọi d là UCLN(2n+3;4n+8)

Ta có:

[2(2n+3)]-[4n+8] chia hết d

=>[4n+6]-[4n+8] chia hết d

=>-2 chia hết d =>d={1;2}

với d=2 ps ko tối giản ->d=1

Vậy ps tối giản

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản

12 tháng 8 2016

a) \(\frac{13}{x+3}\)

Để \(\frac{13}{x+3}\) là số nguyên thì 13 phải chia hết cho x + 3

=> x + 3 thuộc Ư (13) = { 1 ; 13 ; - 1 ; - 13 }

=> x thuộc { -2 ; 10 ; - 4 ; -16 }

\(\frac{x-2}{x+5}\)

Ta có: \(\frac{x-2}{x+5}=\frac{x+5-7}{x+5}=\frac{x+5}{x+5}-\frac{7}{x+5}=1-\frac{7}{x+5}\)

Để \(\frac{x-2}{x+5}\) là số nguyên thì \(\frac{7}{x+5}\) phải là số nguyên

=> x + 5 thuộc Ư (7) = { 1 ; 7 ; -1 ; -7 }

=> x thuộc { - 4 ; 2 ; - 6 ; - 12 }

c) \(\frac{2x+3}{x-3}\)

Ta có: \(\frac{2x+3}{x-3}=\frac{2\left(x-3\right)-3}{x-3}=\frac{2\left(x-3\right)}{x-3}-\frac{3}{x-3}=2-\frac{3}{x-3}\)

Để \(\frac{2x+3}{x-3}\) là số nguyên thì \(\frac{3}{x-3}\) phải là số nguyên

=> x - 3 thuộc Ư (3) = { 1 ; 3 ; - 1 ; -3 }

=> x thuộc { 4 ; 6 ; 2 ; 0 }

12 tháng 8 2016

b) Gọi ƯCLN(3n-2 , 4n-3) = d \(\left(d\ge1\right)\)

Ta có :

 \(\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\) \(\Rightarrow\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\) \(\Rightarrow\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}\)

\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1

Vì ƯCLN(3n-2 , 4n-3) = 1 nên phân số trên tối giản.

Các câu còn lại tương tự

20 tháng 12 2018

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

5 tháng 5 2019

a, \(\frac{n+2}{n+3}\)

Gọi \(d=ƯCLN\left(n+2,n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản

5 tháng 5 2019

b, \(\frac{n+1}{2n+3}\)

Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...