K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

A ko chia hết cho 17

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)=3\left(1+2^2+...+2^{118}\right)⋮3\\ A=\left(1+2+2^2\right)+...+\left(2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(1+...+2^{117}\right)=7\left(1+...+2^{117}\right)⋮7\)

\(A=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2+2^3+2^4\right)+...+2^{115}\left(1+2+2^2+2^3+2^4\right)\\ A=\left(1+2+2^2+2^3+2^4\right)\left(1+...+2^{115}\right)\\ A=31\left(1+...+2^{115}\right)⋮31\)

12 tháng 12 2021

Mình trả lời câu này rồi mà!

18 tháng 12 2021

Cho xin đáp án lẹ đi

22 tháng 12 2021
Lớp 6 lm j đã học cái này :/
7 tháng 1 2022

\(A=1+2+2^2+2^3+...+2^{119}\)

\(\Rightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\)

\(\Rightarrow A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\)

\(\Rightarrow A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)\)

\(\Rightarrow A=3\left(1+2^2+...+2^{118}\right)⋮3\)

\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\)

\(=3\left(1+...+2^{118}\right)⋮3\)

\(A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)

\(=7\left(1+...+2^{117}\right)⋮7\)

\(A=\left(1+2+2^2+2^3+2^4\right)+...+2^{115}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+...+2^{115}\right)⋮31\)

DD
16 tháng 12 2021

\(A=1+2+2^2+2^3+...+2^{119}\)

\(2A=2+2^2+2^3+...+2^{120}\)

\(2A-A=\left(2+2^2+2^3+...+2^{120}\right)-\left(1+2+2^2+2^3+...+2^{119}\right)\)

\(A=2^{120}-1\)

Có \(120\)chia hết cho các số \(2,3,8,5\)nên \(A\)chia hết cho \(2^2-1=3,2^3-1=7,2^8-1=255=17.15,2^5-1=31\).

Suy ra đpcm. 

DD
16 tháng 12 2021

\(A=1+2^1+2^2+...+2^{100}+2^{101}\)

\(=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)

\(=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)

\(=7\left(1+2^3+...+2^{99}\right)\)chia hết cho \(7\).

21 tháng 10 2022

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

27 tháng 11 2017

Ta có: 24n+2 = 4.16n

Vì 16n luôn có số tận cùng là 6 nên 4.6luôn có số tạn cùng là 24.

Nên suy ra:4n+2 +1 luôn có số tạn cùng là 5 và chia hết cho 5.

27 tháng 11 2017

Bạn Vui Nhỏ Thịnh làm đúng rồi nhưng mình chưa hiểu chỗ ta có 2^4n+2 = 4.16n. bạn giải  thích kĩ hơn đc koo