K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
$\frac{1}{1+2+3+...+n}=\frac{1}{\frac{n(n+1)}{2}}=\frac{2}{n(n+1)}$

$=2.\frac{(n+1)-n}{n(n+1)}=2[\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}]$

$=2(\frac{1}{n}-\frac{1}{n+1})$ (đpcm)

11 tháng 2 2019

Đặt A =  \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

=> A < 1 + (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/(n - 1) - 1/n)

=> A < 1 + (1 - 1/n)

=> A < 2 - 1/n

26 tháng 4

chịu