K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}<1\)

=>đpcm

ai tích mình mình tích lại cho

11 tháng 7 2018

\(\frac{1}{n}>\frac{1}{n};\frac{1}{n}>\frac{1}{n+1};\frac{1}{n}>\frac{1}{n+2}\)

\(\Rightarrow\frac{1}{n}\cdot\frac{1}{n}\cdot\frac{1}{n}=\frac{1}{n}\cdot\frac{1}{n+1}\cdot\frac{1}{n+2}\)

\(\Rightarrow\frac{1}{n^3}>\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

23 tháng 10 2017

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.27+3^n.3+2^n.8+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)