K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Bạn kiểm tra lại đề :)

Đề đúng là \(3^{n+1}+2^{n+1}+3^{n-1}+2^{n-1}\)

\(=\left(3^{n+1}+3^{n-1}\right)+\left(2^{n+1}+2^{n-1}\right)\)

\(=3^{n-1}\left(3^2+1\right)+2^{n-2}\left(2^3+2\right)\)

\(=3^{n-1}.10+2^{n-2}.10\)

\(=10\left(3^{n-1}+2^{n-2}\right)\)chia hết cho 10

28 tháng 12 2018

\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{2017}\)

\(\Rightarrow2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{2016}\)

\(\Rightarrow2S-S=1-\left(\frac{1}{2}\right)^{2017}\)

\(\Rightarrow S=1-\left(\frac{1}{2}\right)^{2017}< 1\left(đpcm\right)\)

18 tháng 7 2015

câu này khó tớ không làm được mong các bạn giải hộ tớ

 

 

5 tháng 11 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{n+1}< 1\)=> Q < 1 (đpcm)

18 tháng 9 2018

Vô lí vì C=1/3+1/3^2 +... luôn lớn hơn 1/3. Chắc là c/m <1/2 đúng ko

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)

\(3C-C=1-\frac{1}{3^{2018}}\)

\(2C=1-\frac{1}{3^{2018}}\)

\(C=\frac{1}{2}-\frac{2}{3^{2018}}< \frac{1}{2}\)

Vậy \(C< \frac{1}{2}\left(đccm\right)\)

16 tháng 9 2018

\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2017}\)

  \(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2018}\)

\(\Rightarrow S=2S-S=1-\left(\frac{1}{2}\right)^{2018}\)

\(\Rightarrow S< 1\)( đpcm )

16 tháng 9 2018

\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2018}\)

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}< 1\) ( đpcm ) 

Chúc bạn học tốt ~ 

9 tháng 10 2018

\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)

\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)

\(=2018^{2020}-2017\)