Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ông khuyên cháu: Có Công Mài Sắt Có Ngày Nên Kim
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)
Nên \(\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{y}{3}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Lời giải:
Lấy điểm $K$ sao cho $AKCB$ là hình bình hành
Khi đó: \(\overrightarrow{AK}=\overrightarrow {BC}\Leftrightarrow \overrightarrow{KA}+\overrightarrow{BC}=\overrightarrow{0}\)
Ta có:
\(|\overrightarrow{MA}+\overrightarrow{BC}|=|\overrightarrow{MA}-\overrightarrow{MB}|\)
\(\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}+\overrightarrow{BC}|=|\overrightarrow {BA}|\)
\(\Leftrightarrow |\overrightarrow{MK}|=|\overrightarrow{BA}|\)
Vậy tập hợp điểm M nằm trên đường tròn tâm $M$ bán kính \(R=AB\)
thích làm mỗi bài 10:
\(\left\{\begin{matrix}x+y=45\\8x+9y=379\end{matrix}\right.\)
số hs dc điểm x = 26hs
x = 26 hs9đ
a)\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a^2+2ab+b^2\ge4ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b\)
b)Áp dụng BĐT AM-GM ta có:
\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ab}{c}}=2b\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\end{matrix}\right.\)
Cộng từng vế của 3 BĐT trên rồi thu gọn ta được điều cần chứng minh
Dấu "=" xảy ra khi \(a=b=c\)
c)Áp dụng BĐT AM-GM ta có:
\(\frac{3a+5b}{2}\ge\sqrt{3a\cdot5b}\Leftrightarrow\left(3a+5b\right)^2\ge4\cdot15P\)
\(\Leftrightarrow12^2\ge60P\Leftrightarrow P\le\frac{12}{5}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)
cám ơn nhìu nha.
nhưng mà bn chúc hơi sớm nhỉ
đúng r