\(2017^{2008}\), \(8^{1978},1358^{2008},2^{3456}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Tìm số tận cùng của \(2017^{2008}\)

Ta có: 20174 tận cùng là 1.

=> 20172008 = (20174)502 tận cùng là 1.

Tìm số tận cùng của 81978

Ta có 24 tận cùng là 6.

=> 81978 = 25934 = 22.(24)1483 tận cùng là 4 (4.6=24)

Tương tự cho 2 số còn lại

4 tháng 3 2020

ĐK: \(x,y\ne0\)

\(pt\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\)

Do vai trò của x,y như nhau, không mất tính tổng quát, giả sử: \(x\ge y\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\Rightarrow\frac{3}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow3y\le4\Rightarrow y=1\)(vì \(y\inℕ^∗\))

Lúc đó thì \(1+\frac{1}{x}=\frac{3}{2}\Rightarrow\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)(tm)

Vậy có hai cặp số tự nhiên (x;y) thỏa mãn \(\left(1;2\right);\left(2;1\right)\)

4 tháng 3 2020

Vậy còn x<y thì sao???

10 tháng 2 2017

Cần 4 số 7 nhân với nhau để được đuôi 1

36:4=9(cặp)

Vậy Chữ số tận cùng là:

7x7x7x7=2401  ; suy ra đuôi = 1

Chúc bạn may mắn!!

10 tháng 2 2017

Bài này lp 6 lm ngon

Các số có chữ số tận cùng là 3,7,9 khi nâng lên lũy thừa bậc 4n có chữ số tận cùng là 1

Ta có: 736 = 74.9 = ( ...1)

Có số tận cùng là 1

13 tháng 1 2017

Ta có : 20172018 = ( 20172 )1009 = ( .....9 )1009 

Vì ( .....9 )2n+1 có chữ số tận cùng là 9 => ( ......9 )1009 có chữ số tận cùng là 9

=> 20172018 có chữ số tận cùng là 9

17 tháng 2 2022

hề hề hề

14 tháng 7 2017

Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:

\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:

\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => B < A.

14 tháng 7 2017

Thiệt ta là tui chép sách ngaingung

1: \(\Leftrightarrow x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+2008\right)=0\)

hay \(x\in\varnothing\)

2: \(x^4+x^2+6x-8=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

hay \(x\in\left\{1;-2\right\}\)

18 tháng 10 2016

Chữ số tận cùng của lũy thừa 20152017 là 5

Vì 5. vs bao nhiêu số luỹ thừa  thì cx bằng 5

7 tháng 7 2019

\(\left\{{}\begin{matrix}x+y=13\\xy=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=x^2+2xy+y^2=169\\4xy=88\end{matrix}\right.\Leftrightarrow x^2+2xy+y^2-4xy=81=\left(\pm9\right)^2\) \(+,x-y=9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=2\end{matrix}\right.\)

\(+,x-y=-9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=-9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=11\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=11^2+2^2=125;x^3+y^3=11^3+2^3=1339;x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\pm\left(11^2+2^2\right)\left(11^2-2^2\right)=\pm14625;x^7+y^7=11^7+2^7=19487299;x-y=\pm\left(11-2\right)=\pm9\)

7 tháng 7 2019

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+\left(a+b+c\right)abc=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+0=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{1}{2};\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1^2=1\)

\(\Rightarrow\left(a^4+b^4+c^4\right)+\frac{1}{2}=1\Rightarrow\left(a^4+b^4+c^4\right)=\frac{1}{2}\Leftrightarrow A=\frac{1}{2}\)