Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x,y\ne0\)
\(pt\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\)
Do vai trò của x,y như nhau, không mất tính tổng quát, giả sử: \(x\ge y\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\Rightarrow\frac{3}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Rightarrow3y\le4\Rightarrow y=1\)(vì \(y\inℕ^∗\))
Lúc đó thì \(1+\frac{1}{x}=\frac{3}{2}\Rightarrow\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)(tm)
Vậy có hai cặp số tự nhiên (x;y) thỏa mãn \(\left(1;2\right);\left(2;1\right)\)
Cần 4 số 7 nhân với nhau để được đuôi 1
36:4=9(cặp)
Vậy Chữ số tận cùng là:
7x7x7x7=2401 ; suy ra đuôi = 1
Chúc bạn may mắn!!
Bài này lp 6 lm ngon
Các số có chữ số tận cùng là 3,7,9 khi nâng lên lũy thừa bậc 4n có chữ số tận cùng là 1
Ta có: 736 = 74.9 = ( ...1)
Có số tận cùng là 1
Ta có : 20172018 = ( 20172 )1009 = ( .....9 )1009
Vì ( .....9 )2n+1 có chữ số tận cùng là 9 => ( ......9 )1009 có chữ số tận cùng là 9
=> 20172018 có chữ số tận cùng là 9
Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)
Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.
\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)
Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)
\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)
Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:
\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)
Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:
\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)
Từ ( 2 ) và ( 3 ) => B < A.
1: \(\Leftrightarrow x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+2008\right)=0\)
hay \(x\in\varnothing\)
2: \(x^4+x^2+6x-8=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
hay \(x\in\left\{1;-2\right\}\)
Chữ số tận cùng của lũy thừa 20152017 là 5
Vì 5. vs bao nhiêu số luỹ thừa thì cx bằng 5
\(\left\{{}\begin{matrix}x+y=13\\xy=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=x^2+2xy+y^2=169\\4xy=88\end{matrix}\right.\Leftrightarrow x^2+2xy+y^2-4xy=81=\left(\pm9\right)^2\) \(+,x-y=9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=2\end{matrix}\right.\)
\(+,x-y=-9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=-9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=11\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=11^2+2^2=125;x^3+y^3=11^3+2^3=1339;x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\pm\left(11^2+2^2\right)\left(11^2-2^2\right)=\pm14625;x^7+y^7=11^7+2^7=19487299;x-y=\pm\left(11-2\right)=\pm9\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+\left(a+b+c\right)abc=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+0=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{1}{2};\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1^2=1\)
\(\Rightarrow\left(a^4+b^4+c^4\right)+\frac{1}{2}=1\Rightarrow\left(a^4+b^4+c^4\right)=\frac{1}{2}\Leftrightarrow A=\frac{1}{2}\)
Tìm số tận cùng của \(2017^{2008}\)
Ta có: 20174 tận cùng là 1.
=> 20172008 = (20174)502 tận cùng là 1.
Tìm số tận cùng của 81978
Ta có 24 tận cùng là 6.
=> 81978 = 25934 = 22.(24)1483 tận cùng là 4 (4.6=24)
Tương tự cho 2 số còn lại
c