K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

\(5^6\equiv1\left(mod8\right)\)

\(353\equiv5\left(mod6\right)\Rightarrow353^{81}\equiv5^{81}\equiv5\left(mod6\right)\)

Đặt: \(358^{81}=6t+5\)

=> \(5^{353^{81}}\equiv5^{6t+5}\equiv5^5\equiv5\left(mod8\right)\)

=>\(5^{353^{81}}-5-15.8\equiv0\left(mod8\right)\)

\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod8\right)\)

mà : \(5^{353^{81}}\equiv0\left(mod125\right)\Rightarrow5^{353^{81}}-125\equiv0\left(mod125\right)\)

\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod1000\right)\)

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

18 tháng 6 2019

Giải

22003 = 2003 lần chữ số 2 nhân lại.

Vì 2 × 2 × 2 × 2 = 16 (tận cùng là 6)

Mà 6 × 6 × 6 × ... = X (tận cùng là sáu vì 6 × 6 = 36)

Bốn số 2 nhân lại mới được 6 vậy có tổng cộng 2003 số 2 chia 4, tức là thế này:

(2 × 2 × 2 × 2) × (...) × ... = X  (có 2003 chữ số 2)

Có tổng cộng 2003 ÷ 4 = 500 (cặp) và dư lại 3 số 2.

Vậy chữ số tận cùng là 6 × ba số hai

=> 6 × 2 × 2 × 2 = 48 (tận cùng là 8)

Vậy bạn Hùng sai !

Ghi chú: thật ra em mới học lớp 5 và biết một tí về toán lớp 6 nên bài này em làm được! 

18 tháng 6 2019

Bạn Hùng giải sai vì :

(29)17 . 2 = 2153 . 2 = 2154 \(\ne\)2155

20 tháng 6 2019

Dùng mod 1000

Sẽ tách 1000=8.125

Vì \(306^{2009^{300}}⋮8\) và (306, 125)=1

+) Ta có: \(306^{2009^{300}}\equiv0\left(mod8\right)\)(1)

+) Tìm ? : \(306^{2009^{300}}\equiv?\left(mod125\right)\)

+) \(2009^{300}\equiv9^{300}\equiv9^{10.30}\equiv1\left(mod100\right)\)

Đặt: \(2009^{300}=100t+1\)

Ta có: \(306^{2009^{300}}=306^{100t+1}=306^{100t}.306\equiv306\equiv56\left(mod125\right)\)(2)

Từ (1)  và 56 chia hết cho 8 => \(306^{2009^{300}}-56\equiv0\left(mod8\right)\Rightarrow306^{2009^{300}}\equiv56\left(mod8\right)\)(3)

Từ (1), (2) và (125, 8) =1 

=> \(306^{2009^{300}}\equiv56\left(mod1000\right)\)

Vậy 3 chữ số tận cùng là 056

     

20 tháng 6 2019

Khồng phải từ (1) và (2) mà là từ (2) và (3)

(2) <=> \(306^{2009^{300}}-56\)chia hết cho 8

(3) <=> \(306^{2009^{300}}-56\)chia hết cho 125

Từ (2), (3) và (8, 125) => \(306^{2009^{300}}-56\)chia hết cho 1000

=>\(\text{​​}\text{​​}306^{2009^{300}}\)chia 1000 dư 56 nghĩa là \(\text{​​}\text{​​}306^{2009^{300}}\)có dạng có 3 chữ số tận cùng là 056

9 tháng 11 2016

3 so moi thoi

2 tháng 12 2016

Vì số 6 lũy thừa lên đều có kết quả có chữ số tận cùng là 6 nên ta có: 6^7^8^9 có chữ số tận cùng là 6

26 tháng 3 2017

bang 5625

26 tháng 3 2017

25mu25=25mu5mu5=125mu5=.....0625

18 tháng 2 2019

n^5-n=n(n^4-1)=n(n²-1)(n²-4+5) 
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a) 
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10 
( vì (2,5)=1) (b) 
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c) 
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10 
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm) 

k mk đi

18 tháng 2 2019

 A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 

* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 

n chia hết cho 5 => A chia hết cho 5. 

n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 

- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 

- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 

- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 

- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 

=> A luôn chia hết cho 5 

2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 

=>đpcm