K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó; MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: Ta có: ΔONC cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)NC tại I

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

Xét ΔOIM vuông tại I và ΔOHK vuông tại H có

\(\widehat{IOM}\) chung

Do đó: ΔOIM đồng dạng với ΔOHK

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)

=>\(OI\cdot OK=OH\cdot OM=R^2\)

=>\(OI\cdot OK=OC\cdot OC\)

=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

Xét ΔOIC và ΔOCK có

\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

\(\widehat{IOC}\) chung

Do đó: ΔOIC đồng dạng với ΔOCK

=>\(\widehat{OIC}=\widehat{OCK}\)

=>\(\widehat{OCK}=90^0\)

=>KC là tiếp tuyến của (O)

31 tháng 12 2023

thank bro

29 tháng 12 2021

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: Xét ΔOAM vuông tại A có cosAOM=OA/OM=1/2

nên góc AOM=60 độ

=>góc AOB=60 độ

=>sđ cung AB=60 độ

b: Xét (O) có

MA,MC là tiếp tuyến

nên MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc với AC

c: Xét ΔOAB có OA=OB và góc AOB=60 độ

nên ΔOAB đều

mà AH là đườg cao

nên H là trung điểm của OB

=>HO=HB

Vì MO là trung trực của AC

nên MO vuông góc AC tại H và H là trung điểm của AC

HA*HC=HA^2

HO*HM=HA^2

=>HA*HC=HO*HM

=>HA*HC=HB*HM

d: Xét ΔOBC có OB=OC và góc BOC=60 độ

nên ΔBCO đều

=>OB=OC=BC=OA=AB

=>OA=AB=BC=OC

=>OABC là hình thoi

16 tháng 4 2020

a) Xét tam giác OAH và tam giác OCH, có:

   OA=OC=R ;  OH chung  ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)

=> Tam giác OAH = tam giác OCH (ch-cgv)  => AH=HC (2 cạnh tương ứng)

<=> H là trung điểm cạnh AC (đpcm)

b)  Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC

      Xét tam giác OAM và tam giác OCM, có:  OA=OC=R ;  MA=MC ; OM chung

=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)

<=> MC là tiếp tuyến của (O)  (đpcm)

1 tháng 12 2023

O A B M H C D K F I

a/

Xét tg vuông AMO và tg vuông BMO có

MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

OA=OB=R

=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)

Xét tg MAB có

MA=MB (cmt) => tg MAB cân tại M

\(\widehat{AMO}=\widehat{BMO}\) (cmt)

\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

Xét tg vuông AMO có

\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/

Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)

Xét tg vuông AMC có

\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Ta có

\(AM^2=MO.MH\) (cmt)

\(\Rightarrow MH.MO=MD.MC\)

c/ Xét tg AMK có

\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)

\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)

\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)

Phần còn lại không biết điểm E là điểm nào?

 

 

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)