Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4n-5⋮13\)
\(\Rightarrow4n-5+13⋮13\Rightarrow4n+8⋮13\Rightarrow4\left(n+2\right)⋮13\)
Vì (4;13) = 1 nên n+2 chia hết cho 13
=> n=13k-2 ( \(k\in N\)*)
b) \(5n+1⋮7\Rightarrow5n+1+14⋮7\Rightarrow5n+15⋮7\Rightarrow5\left(n+3\right)⋮7\)
Vì 5 không chia hết cho 7 nên để 5(n+3) chia hết cho 7 thì n+3 chia hết cho 7
=> n = 7k-3 ( \(k\in N\)*)
c) \(25n+3⋮53\Rightarrow25n+3-53⋮53\Rightarrow25n-50⋮53\Rightarrow25\left(n-2\right)⋮53\Rightarrow n-2⋮53\)
=> n = 53k+2 ( k thuộc N*)
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
( m - 3 ) . ( n - 2 ) = 5
=> m - 3 , n - 2 thuộc Ư ( 5 ) = { - 5 ; - 1 ; 1 ; 5 }
Lập bảng giá trị tương ứng giá trị của m , n
m - 3 | - 5 | - 1 | 1 | 5 |
m | - 2 | 2 | 4 | 8 |
n - 2 | - 1 | - 5 | 5 | 1 |
n | 1 | - 3 | 7 | 3 |
Ta có : A = 5 + 52 + 53 + ...... + 52016
=> 5A = 52 + 53 + 54 + ........ + 52017
=> 5A - A = 52017 - 5
=> 4A = 52017 - 5
=> 4A + 5 = 52017
=> n = 2017