Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để n + 4/n là số nguyên thì n + 4 chia hết cho n
=> 4 chia hết cho n
=> n thuộc {1; 2; 4}
Vậy...
b, Để n - 2/4 là số nguyên thì n - 2 chia hết cho 4
=> n - 2 = 4k (k thuộc N)
=> n = 4k + 2
Vậy n = 4k + 2 với n thuộc N
c, Để 6/n - 1 là số nguyên thì 6 chia hết cho n - 1
=> n - 1 thuộc {1; 2; 3; 6}
=> n thuộc {2; 3; 4; 7}
Vậy....
d, Để n/n - 2 là số nguyên thì n chia hết cho n - 2
=> n - 2 + 2 chia hết cho n - 2
=> 2 chia hết cho n - 2
=> n - 2 thuộc {1; 2}
=> n thuộc {3; 4}
Vậy...
để A có giá trị là số nguyên thì (3n+9) phải chia hết cho(n-4)
n-4 chia hết cho n-4
suy ra 3(n-4) cũng chia hết cho n-4
Vậy 3n-12 chia hết cho n-4
Suy ra (3n+9)-(3n-4) chia hết cho n-4
suy ra 13 chia hết cho n-4
n-4 thuộc tập hợp ƯC của 13
Bạn tự làm tiếp nhé!!!( lập bảng hay không đều được)
Ta có:
\(\dfrac{8n+19}{4n+1}=\dfrac{8n+2+17}{4n+1}=\dfrac{2\left(4n+1\right)+17}{4n+1}=2+\dfrac{17}{4n+1}\)
Để bt nguyên thì \(\dfrac{17}{4n+1}\) phải nguyên:
\(\Rightarrow4n+1\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
Mà n phải nguyên nên:
\(\Rightarrow4n+1\in\left\{1;17\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
Vậy: ...
(8n + 19)/(4n + 1) = 2 + 17/(4n+1). Để (8n + 19)/(4n + 1) có giá trị là một số nguyên => 17 chia hết cho 4n + 1
=> 4n + 1 = 17 => n = 4
=> 4n + 1 = 1 => n = 0
(2 số -17; -4 loại vì n ra phân số)
a)M là p/s <=>x+5 \(\ne\) 0<=>x \(\ne\) -5
Vậy x \(\ne\) -5 thì M là p/s
b)M nguyên<=>x-2 chia hết cho x+5
<=>(x+5)-7 chia hết cho x+5
mà x+5 chia hết cho x+5
=>7 chia hết cho x+5
=>x+5 E Ư(7)={-7;-1;1;7}
=>x E {-12;-6;-4;2}
vậy...
Em điều chỉnh nhé, chưa có biểu thức A đâu!
a. Số nguyên n khác 0 thì A là phân số.
b. - Thay n = 0 vào A, ta được: \(\dfrac{3}{0}\left(vô.lí\right)\) (A không có giá trị)
- Thay n = 2 vào A, ta được: \(\dfrac{3}{2}\) \(\left(A=\dfrac{3}{2}\right)\)
- Thay n = -7 vào A, ta được: \(\dfrac{3}{-7}\) \(\left(A=\dfrac{3}{-7}\right)\)
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)