Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 2; y = 4 vào hàm số \(y=\left(m-\frac{1}{2}\right)x\) , ta có :
\(4=\left(m-\frac{1}{2}\right)2\) (=) m = 2,5
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK
Answer:
a)
Ta thay \(A\left(2;4\right)\) vào \(y=\left(m-\frac{1}{2}\right)x\)
Có: \(4=\left(m-\frac{1}{2}\right).2\Rightarrow m=\frac{5}{2}\)
b)
Ta thay \(m=\frac{5}{2}\) vào \(y=\left(m-\frac{1}{2}\right)x\)
Có: \(y=\left(\frac{5}{2}-\frac{1}{2}\right)x=2x\)
Trường hợp 1: Cho \(x=0\Leftrightarrow y=0\) đồ thị qua \(O\left(0;0\right)\)
Trường hợp 2: Cho \(x=2\Leftrightarrow y=4\) đồ thị qua \(B\left(2;4\right)\)
Ta thay \(y=2\) vào \(y=2x\)
Có: \(2=2x\Leftrightarrow x=1\)
Vậy điểm cần tìm \(A\left(1;2\right)\)
a) Vì đths \(y=\)\(\frac{a}{x}\) đi qua \(M\left(2;3\right)\)
Thay \(x=2;y=3\)
\(\Leftrightarrow\)\(\frac{a}{2}=3\)
\(\Leftrightarrow a=6\)
Vậy hệ số \(a=6\)
b) * Xét điểm \(N\left(-1;6\right)\)
\(\Rightarrow\)Thay \(x=-1;y=6\)vào hàm số \(y=\frac{6}{x}\)
\(\Rightarrow6\ne\frac{6}{-1}\Rightarrow N\notinđths\)
* Xét điểm \(P\left(\frac{1}{3};18\right)\)
\(\Rightarrow\)Thay \(x=\frac{1}{3};y=18\) vào hàm số \(y=\frac{6}{x}\)
\(\Rightarrow18=\frac{6}{\frac{1}{3}}\Rightarrow P\inđths\)
2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
Đồ thị hàm số đi qua A(- \(\dfrac{1}{2}\); 1)
⇔ m.|- \(\dfrac{1}{2}\)| + 2.(-\(\dfrac{1}{2}\)) = 1
\(\dfrac{1}{2}\)m - 1 = 1
\(\dfrac{1}{2}\)m = 2
m = 2 x 2
m = 4
Kết luận với m = 4 thì đồ thị hàm số đi qua A(- \(\dfrac{1}{2}\); 1)