Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a)
Ta thay \(A\left(2;4\right)\) vào \(y=\left(m-\frac{1}{2}\right)x\)
Có: \(4=\left(m-\frac{1}{2}\right).2\Rightarrow m=\frac{5}{2}\)
b)
Ta thay \(m=\frac{5}{2}\) vào \(y=\left(m-\frac{1}{2}\right)x\)
Có: \(y=\left(\frac{5}{2}-\frac{1}{2}\right)x=2x\)
Trường hợp 1: Cho \(x=0\Leftrightarrow y=0\) đồ thị qua \(O\left(0;0\right)\)
Trường hợp 2: Cho \(x=2\Leftrightarrow y=4\) đồ thị qua \(B\left(2;4\right)\)
Ta thay \(y=2\) vào \(y=2x\)
Có: \(2=2x\Leftrightarrow x=1\)
Vậy điểm cần tìm \(A\left(1;2\right)\)
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK