\(\in\)N*

CMR1 bé hơn \(\frac{x}{x+y}+\frac{y}{y+z}+\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Lời giải:

Với $x,y,z\in\mathbb{N}^*$ ta có:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$

Lại có:

Xét hiệu: $\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z\in\mathbb{N}^*$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{x+y+z}$

$\frac{z}{x+z}< \frac{z+y}{x+y+z}$

Cộng theo vế ta được:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2(2)$

Từ $(1); (2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Lời giải:

Với $x,y,z\in\mathbb{N}^*$ ta có:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$

Lại có:

Xét hiệu: $\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z\in\mathbb{N}^*$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{x+y+z}$

$\frac{z}{x+z}< \frac{z+y}{x+y+z}$

Cộng theo vế ta được:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2(2)$

Từ $(1); (2)$ ta có đpcm.

15 tháng 8 2017

Cậu có chắc của lớp 6 không ???

Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\) 

Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)

24 tháng 4 2019

Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si  \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)

14 tháng 7 2016

a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)

\(\Rightarrow x=-25;y=-35;z=-20\)

14 tháng 7 2016

b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)

\(\Rightarrow x=-25;y=20;z=35\)

17 tháng 5 2017

Ta có:

\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)

Ta có :

\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+x}+\frac{1}{z+x}\right)\)

\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)

5 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x+y+2015}{z}=\frac{y+z-2016}{x}=\frac{z+x+1}{y}.\)

\(=\frac{x+y+2015+y+z-2016+z+x+1}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Do đó x+y+z=1 => x+y=1-z => \(\frac{2016-z}{z}=2\Rightarrow2016-z=2z\Leftrightarrow2016=3z\)

=> z= 672

Tương tự : x= -2015/3; y=2/3

13 tháng 4 2017

x=2015/3

y=2/3

14 tháng 7 2016

a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)

\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)

14 tháng 7 2016

b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)

\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

10 tháng 4 2017

\(\frac{-2}{x}=\frac{y}{3}\)

=> x.y=-6

=> Ta có các bộ (x,y) là (-1;6),(1;-6),(-2;3),(2;-3),(6;-1),(-6;1),(3;-2),(-3;2)

\(\frac{13}{x}=\frac{y}{1}\)

=>x.y=13

Ta có các bộ số (x,y) là (-1;-13);(1;13);(-13;-1),(13;1)

18 tháng 8 2016

Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t

Thay vào P được : \(P=1+1+1+1=4\)

18 tháng 8 2016

Sao thủy

Sao kim

Trái đất

Sao hỏa

Sao mộc

Sao thổ

Sao thiên vương

Sao hải vương