Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015x}{xy+2015x+2015}+\frac{y}{yz+y+2015}+\frac{z}{xz+z+1}\)
Thay 2015=xyz vào A, ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz+xy+xyz}{xy\left(xz+z+1\right)}=\frac{xy\left(xz+1+z\right)}{xy\left(xz+z+1\right)}=1\)
nhầm xíu nhá mk lm lại :
\(A=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)\(=\frac{xz}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xy}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}=\frac{xy}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xy+1+z}{xz+z+1}=1\)
vậy A=1
Ta có \(xy+yz+xz=\frac{2^2-18}{2}=-7\)
\(x+y+z=2\)=> \(z-1=-x-y+1\)
=> \(\frac{1}{xy+z-1}=\frac{1}{xy-x-y+1}=\frac{1}{\left(x-1\right)\left(y-1\right)}\)
Tương tự \(\frac{1}{yz+x-1}=\frac{1}{\left(y-1\right)\left(z-1\right)};\frac{1}{xz+y-1}=\frac{1}{\left(z-1\right)\left(x-1\right)}\)
=> \(S=\frac{x+y+z-3}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=-\frac{1}{xyz-\left(yz+xy+xz\right)+\left(x+y+z\right)-1}\)
\(=\frac{-1}{-1+7+2-1}=-\frac{1}{7}\)
Vậy \(S=-\frac{1}{7}\)
Ta có:\(10=2xyz\)
=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\)
\(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)
\(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)
\(=1\)
Vậy P=1
Lời giải:
Ta có:
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+zxy+zx.xy}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}=\frac{1+x+xy}{1+x+xy}=1\) (thay $xyz=1$)
$\Rightarrow $ đpcm