\(\frac{x}{1+yz}\) +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

ta có : xy + yz +zx = 0

        * yz = -xy-zx

\(\Rightarrow\)*xy = - yz - zx

         *zx= -xy-yz

ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)

          M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)

          M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)

          M = -y - x - x - z - y - z

         M = -2y - 2x - 2z

         M = -2( x+y+z )

   mà x+y+z=-1

         M = (-2) . (-1)

         M =2

     

8 tháng 3 2018

 Quản lý

7 tháng 6 2021

Vì xy + yz + zx = 1 ta có : 

\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)

\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)

\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM) 

6 tháng 9 2018

\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)

    \(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)

    \(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)

    \(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)

    \(=0-2\left(x+y+z\right)\)

    \(=0-2.\left(-1\right)=0-\left(-2\right)=2\)

Chúc bạn học tốt.

21 tháng 5 2019

Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )

 xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )

Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )

\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)

7 tháng 11 2018

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)

13 tháng 2 2020

Ta chứng minh:  \(x^2+y^2+z^2\ge xy+yz+zx\)

Thật vậy \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Áp dụng BĐT Svacxo, ta có:

\(\text{ Σ}_{cyc}\frac{1}{1+xy}\ge\frac{\left(1+1+1\right)^2}{3+xy+yz+zx}=\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

13 tháng 2 2020

Theo hệ quả của bất đẳng thức Cauchy ta có :
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\frac{9}{4}\le\frac{9}{3+xy+xz+yz}\left(1\right)\)

Ta có : \(C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+xz}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow C=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{4}\)

Vậy \(C_{min}=\frac{9}{4}\)

Dấu " =" xảy ra khi \(x=y=z=\sqrt{\frac{1}{3}}\)

Chúc bạn học tốt !!!