\(x+y+z=0\) và \(x^2+y^2+z^2=14\)

Tính

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

Ta có : \(x+y+z=0\)

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow14+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=-14\)

\(\Leftrightarrow xy+yz+xz=-7\)

\(\Leftrightarrow\left(xy+yz+xz\right)^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2\left(xy^2z+2x^2yz+2xyz^2\right)=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz.0=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2=49\)

Lại có : \(x^2+y^2+z^2=14\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=196\)

\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=196\)

\(\Leftrightarrow x^4+y^4+z^4+2.49=196\)

\(\Leftrightarrow x^4+y^4+z^4=196-98\)

\(\Leftrightarrow A=98\)

Vậy \(A=98\)

haha

24 tháng 5 2017

\(x+y+z=0< =>x+y=-z=>\left(x+y\right)^2=\left(-z\right)^2.\)

\(< =>x^2+2xy+y^2=z^2< =>x^2+y^2-z^2=-2xy\)

\(< =>\left(x^2+y^2-z^2\right)=\left(-2xy\right)^2\)

\(< =>x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)

\(< =>x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)

\(< =>2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=\left(x^2+y^2+z^2\right)^2.\)

\(< =>x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2}{2}=\frac{a^4}{2}\)

Vậy \(x^4+y^4+z^4=\frac{a^4}{2}\)

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

20 tháng 5 2017

mọi người có biết khi âm điểm thì phải làm thế nào để hết âm điểm ko

19 tháng 11 2017

đề

19 tháng 11 2017

Tìm x,y,z biết

29 tháng 12 2019

tham khảo

https://olm.vn/hoi-dap/detail/107532181603.html

15 tháng 7 2017

a/ \(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)

\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)

15 tháng 7 2017

b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

27 tháng 10 2016

\(x+y+z=0\)

=>\(\left(x+y+z\right)^2=0\)

=>\(x^2+y^2+z^2+2xy+2yz+2xz=0\)

=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

=>\(2+2\left(xy+yz+xz\right)=0\)

=>\(xy+yz+xz=-1\)

=>\(\left(xy+yz+xz\right)^2=1\)

=>\(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=1\)

=>\(x^2y^2+y^2z^2+x^2z^2+2xyz\left(y+z+x\right)=1\)

=>\(x^2y^2+y^2z^2+x^2z^2+2.xyz.0=1\)

=>\(x^2y^2+y^2z^2+x^2z^2=1\)

Mặt khác: \(x^2+y^2+z^2=2\)

=>\(\left(x^2+y^2+z^2\right)^2=4\)

=>\(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=4\)

=>\(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=4\)

=>\(x^4+y^4+z^4+2.1=4\)

=>\(x^4+y^4+z^4+2=4\)

=>\(x^4+y^4+z^4=2\)

28 tháng 10 2016

minh nghi ban nen dung dau tuong duong Tra My

20 tháng 4 2017

bài 1 ta có x+y+z=0 suy ra y+z=-x 

(-x)2=x2=(y+z)2=y2+2yz+z2

suy ra 

\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)

tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)

bài 2 bạn ghi đề không rõ ràng nên mình không giải

21 tháng 4 2017

Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)