\(x;y;z\) không âm thỏa mãn \(x+y^2+z^3=1\). Tìm GTLN...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

Đặt \(\left(x;2y;4z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2019\)

Ta cần chứng minh: \(\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ac}{c+a}\le2019\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow VT=\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ac}{c+a}\le\frac{2ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{2bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{2ac}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow VT\le\frac{b}{2}+\frac{a}{2}+\frac{c}{2}+\frac{b}{2}+\frac{a}{2}+\frac{c}{2}=a+b+c=2019\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{2019}{3}\) hay \(\left(x;y;z\right)=\left(\frac{2019}{3};\frac{2019}{6};\frac{2019}{12}\right)\)

24 tháng 9 2017

Áp dụng BĐT bunyakovsky:

\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))

Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)

Áp dụng BĐT cauchy-schwarz:

\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)

DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)

Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{y+z}}{x}\geq \frac{(y+z)(x+\sqrt{yz})}{x}=y+z+\frac{\sqrt{yz}(y+z)}{x}\)

Hoàn toàn tương tự :

\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+z}}{y}\geq x+z+\frac{\sqrt{xz}(x+z)}{y}\)

\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+y}}{z}\geq x+y+\frac{\sqrt{xy}(x+y)}{z}\)

Cộng theo vế:

\(T\geq 2(x+y+z)+\underbrace{\frac{(x+y)\sqrt{xy}}{z}+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}}_{M}\)

Ta có:

\(M=\frac{(\sqrt{2}-z)\sqrt{xy}}{z}+\frac{(\sqrt{2}-x)\sqrt{yz}}{x}+\frac{(\sqrt{2}-y)\sqrt{xz}}{y}\)

\(=\sqrt{2}\left(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\right)-(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Áp dụng BĐT AM-GM:

\(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\geq 3\sqrt[3]{\frac{xyz}{xyz}}=3\)

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\leq \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=\sqrt{2}\)

Do đó: \(M\geq 3\sqrt{2}-\sqrt{2}=2\sqrt{2}\)

\(\Rightarrow T\geq 2(x+y+z)+M\geq 2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)

Vậy \(T_{\min}=4\sqrt{2}\)

21 tháng 6 2021

Má mày giúp tao bài tao gửi đii:(

DD
21 tháng 6 2021

Ta có bất đẳng thức: với \(x,y>0\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dấu \(=\)khi \(x=y\).

Áp dụng bất đẳng thức trên ta được: 

\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)

\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)

Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được: 

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)

3 tháng 9 2019

em chưa học đến :)

3 tháng 9 2019

ok em

17 tháng 11 2017

@Ace Legona help me

20 tháng 11 2017

@Akai Haruma

AH
Akai Haruma
Giáo viên
4 tháng 3 2017

Lời giải:

Do \(xyz=8\) nên tồn tại các số dương \(a,b,c\) sao cho \((x,y,z)=\left(\frac{2a^2}{bc},\frac{2b^2}{ac},\frac{2c^2}{ab}\right)\)

Khi đó , BĐT cần CM tương đương với:

\(P=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\geq 1\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2}\) \((1)\)

Áp dụng bất đẳng thức AM-GM:

\(a^2b^2+b^2c^2\geq 2ab^2c\). Tương tự với các cặp biểu thức còn lại và cộng theo vế suy ra \(a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Rightarrow abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq 2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Rightarrow a^4+b^4+c^4+abc(a+b+c)+a^2b^2+b^2c^2+c^2a^2\leq (a^2+b^2+c^2)^2\) \((2)\)

Từ \((1),(2)\Rightarrow P\geq 1\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)