Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $xy+yz+xz=1$ nên:
\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)
\(y^2+1=y^2+xy+yz+xz=(y+x)(y+z)\)
\(z^2+1=z^2+xy+yz+xz=(z+y)(z+x)\)
Do đó:
\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{1+z^2}=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)
\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{\sqrt{(x+y)^2(y+z)^2(x+z)^2}}\)
\(=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\) (đpcm)
Lời giải:
Vì $xy+yz+xz=1$ nên:
\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)
\(y^2+1=y^2+xy+yz+xz=(y+x)(y+z)\)
\(z^2+1=z^2+xy+yz+xz=(z+y)(z+x)\)
Do đó:
\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{1+z^2}=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)
\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{\sqrt{(x+y)^2(y+z)^2(x+z)^2}}\)
\(=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\) (đpcm)
Áp dụng BĐT Cô - si cho 3 bộ số không âm
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)
\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)
\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)
Mà \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)
Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)
Ta có:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{z}{x+z}+1\)
\(=\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{\frac{x}{z}+1}+1\)
Đặt \((\frac{x}{y}, \frac{y}{z})=(a,b)\Rightarrow ab=\frac{x}{z}\geq 1\) do $x\ge z$
Bài toán trở thành: Cho 2 số dương $a,b$ thỏa mãn $ab\geq 1$. Tìm min của
\(P=\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}+1=\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}+1\)
Có: \(P+1=\frac{a+b+1}{b+1}+\frac{b+a+1}{a+1}+\frac{1}{ab+1}\). Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:
\(P+1\geq (a+b+1).\frac{4}{b+1+a+1}+\frac{1}{(\frac{a+b}{2})^2+1}=\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}(1)\)
Đặt \(t=a+b\). Theo BĐT AM-GM \(t=a+b\geq 2\sqrt{ab}\geq 2\sqrt{1}=2\)
Xét hiệu:
\(\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}-\frac{7}{2}=\frac{4(t+1)}{t+2}+\frac{4}{t^2+4}-\frac{7}{2}\)
\(=\frac{t^3-6t^2+12t-8}{2(t+2)(t^2+4)}=\frac{(t-2)^3}{2(t+2)(t^2+4)}\geq 0, \forall t\geq 2\)
\(\Rightarrow \frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}\geq \frac{7}{2}(2)\)
Từ \((1);(2)\Rightarrow P+1\geq \frac{7}{2}\Rightarrow P\geq \frac{5}{2}\)
Vậy $P_{\min}=\frac{5}{2}$
Dấu "=" xảy ra khi $x=y=z$
@Ace Legona help me
@Akai Haruma