Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt[3]{x+3y}}\ge\frac{1}{\frac{x+3y+1+1}{3}}=\frac{3}{x+3y+2}\\ \text{Tương tự }\Rightarrow P\ge\frac{3}{x+3y+2}+\frac{3}{y+3z+2}+\frac{3}{z+3x+2}\\ \ge3\cdot\frac{9}{x+3y+2+y+3z+2+z+3x+2}\\ =3\)
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)(với a,b,c > 0 )
\(\Leftrightarrow a^3+b^3+c^3\ge3abc\Leftrightarrow abc\le\frac{a^3+b^3+c^3}{3}\).
AD CT trên ta có :
\(1.1.\sqrt[3]{x+3y}\le\frac{1+1+x+3y}{3}\Leftrightarrow\sqrt[3]{x+3y}\le\frac{x+3y+2}{3}\).
Cmtt có : \(\sqrt[3]{y+3z}\le\frac{y+3z+2}{3};\sqrt[3]{z+3x}\le\frac{z+3x+2}{3}\)
\(\Rightarrow\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\le\frac{4\left(x+y+z\right)+6}{3}=3\)
AD BĐT Cộng mẫu số ta có:
\(\frac{1}{\sqrt[3]{x+3y}}+\frac{1}{\sqrt[3]{y+3z}}+\frac{1}{\sqrt[3]{z+3x}}\ge\frac{\left(1+1+1\right)^2}{\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}}\ge\frac{9}{3}=3\)Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=\frac{1}{4}\)
Vậy GTNN của b.thức là P = 3 khi a = b = c =\(\frac{1}{4}\)
đặt \(\left(a;b;c\right)=\left(\sqrt{\frac{yz}{x}};\sqrt{\frac{zx}{y}};\sqrt{\frac{xy}{z}}\right)\)\(\Rightarrow\)\(a^2+b^2+c^2=1\)
\(A=\Sigma\frac{1}{1-ab}=\Sigma\frac{2ab}{2\left(a^2+b^2+c^2\right)-2ab}+3\le\frac{1}{2}\Sigma\frac{\left(a+b\right)^2}{b^2+c^2+c^2+a^2}\)
\(\le\frac{1}{2}\Sigma\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\right)=\frac{9}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)
\(F\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(F\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
Dấu "=" xảy ra khi \(x=y=z=\frac{3}{4}\)
Bài này mà cũng cho vào chh làm gì vậy . Bài này t làm rồi nhé.
Câu hỏi của Mai Linh - Toán lớp 8 | Học trực tuyến
Áp dụng BĐT AM - GM ta có:
\(16F=\frac{\left(1+1+1+1\right)^2}{x+x+y+z}+\frac{\left(1+1+1+1\right)^2}{x+y+y+z}+\frac{\left(1+1+1+1\right)^2}{x+y+z+z}\)
\(\le\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
\(=4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)
\(\Leftrightarrow F\le1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = \(\frac{3}{4}\)
Vậy Max F = 1 \(\Leftrightarrow x=y=z=\frac{3}{4}\)
Lời giải:
Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)
BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)
Áp dụng vào bài toán:
\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)
\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)
\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)
Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
Má mày giúp tao bài tao gửi đii:(
Ta có bất đẳng thức: với \(x,y>0\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Dấu \(=\)khi \(x=y\).
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)
\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)
Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)