Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+10xy+8y^2=96\)
\(\Leftrightarrow3x^2+6xy+4xy+8y^2=96\)
\(\Leftrightarrow3x\left(x+2y\right)+4y\left(x+2y\right)=96\)
\(\Leftrightarrow\left(x+2y\right)\left(3x+4y\right)=96\)
Ta có: \(96=1\cdot96=2\cdot48=3\cdot32=4\cdot24=8\cdot12=6\cdot16\)
Mà \(x,y>0\Rightarrow \)\(\left\{\begin{matrix}3x+4y>7\\x+2y>3\end{matrix}\right.\)
Ta có các hệ sau: \(\left\{\begin{matrix}x+2y=4\\3x+4y=24\end{matrix}\right.\)\(\left(I\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=16\\y=-6\end{matrix}\right.\left(Loai\right)\)
\(\left\{\begin{matrix}x+2y=6\\3x+4y=16\end{matrix}\right.\)\(\left(II\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=4\\y=1\end{matrix}\right.\) (Thỏa mãn)
\(\left\{\begin{matrix}x+2y=8\\3x+4y=12\end{matrix}\right.\)\(\left(III\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=4\\y=6\end{matrix}\right.\left(Loai\right)\)
\(\left\{\begin{matrix}x+2y=12\\3x+4y=8\end{matrix}\right.\)\(\left(IV\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=-16\\y=14\end{matrix}\right.\left(Loai\right)\)
Vậy nghiệm của phương trình là \(\left\{\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Bài 2:
b) Với y = 0 thì vt của pt thứ 2 = 0 => loại.
Xét y khác 0:
Nhân pt thứ nhất với \(\frac{7}{5}\) rồi trừ đi pt thứ 2 thu được:
\(\frac{14}{5}x^3+\frac{21}{5}x^2y-y^3-6xy^2=0\)
\(\Leftrightarrow\frac{1}{5}\left(x-y\right)\left(14x^2+35xy+5y^2\right)=0\)
Với x = y, thay vào pt thứ 2:
\(7x^3=7\Rightarrow x=1\Rightarrow y=1\)
Với \(14x^2+35xy+5y^2=0\)
\(\Leftrightarrow14\left(\frac{x}{y}\right)^2+35\left(\frac{x}{y}\right)+5=0\)
Đặt \(\frac{x}{y}=t\) suy ra: \(14t^2+35t+5=0\Rightarrow\left[{}\begin{matrix}t=\frac{-35+3\sqrt{105}}{28}\\t=\frac{-35-3\sqrt{105}}{28}\end{matrix}\right.\)
Nghiệm xấu quá, chị tự thay vào giải nốt :D. Nhớ check xem em có tính nhầm chỗ nào ko:D
3/ Sửa phân thức thứ 3 thành: \(\frac{1}{1+c^3}\).
Quy đồng lên ta cần chứng minh: \(\frac{\Sigma_{cyc}\left(1+a^3\right)\left(1+b^3\right)}{\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)}\ge\frac{3}{1+abc}\)
\(\Leftrightarrow abc\left(a^3b^3+b^3c^3+c^3a^3\right)+2abc\left(a^3+b^3+c^3\right)-3a^3b^3c^3-\left[a^3+b^3+c^3-3abc+2\left(a^3b^3+b^3c^3+c^3a^3\right)\right]\ge0\)Đến đây chắc là đổi biến sang pqr rồi làm nốt ạ! Hơi trâu bò tí, cách khác em chưa nghĩ ra.
\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)
mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)
\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)