\(x^2+y^2+z^2=3xyz\)  . CM 

\(\frac{x^2}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Áp dụng bất đẳng thức Bunyakovsky 

\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{y^4+xz}\le\frac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\frac{z^2}{z^4+xy}\le\frac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{cases}}\)

\(\Rightarrow VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)

Chứng minh rằng :

\(2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\frac{3}{4}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)

\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)

\(\Rightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\frac{x^2}{4x^2\sqrt{yz}}=\frac{1}{4\sqrt{yz}}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\frac{1}{4\sqrt{xz}}\\\frac{z^2}{\left(z^2+\sqrt{zy}\right)^2}\le\frac{1}{4\sqrt{xy}}\end{cases}}\)

\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\)

\(\le\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{xz}\right)\)

Chứng minh rằng : \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)

Theo đề bài ta có : \(x^2+y^2+z^2=3xyz\)

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=3\)

\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)

\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{x}+\frac{1}{y}}{2}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{1}{\sqrt{xz}}\le\frac{\frac{1}{x}+\frac{1}{z}}{2}\\\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{z}+\frac{1}{y}}{2}\end{cases}}\)

\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{x}{yz}+\frac{y}{xz}\ge2\sqrt{\frac{1}{z^2}}=\frac{2}{z}\)

Tương tự ta có :

\(\hept{\begin{cases}\frac{y}{xz}+\frac{z}{xy}\ge\frac{2}{x}\\\frac{x}{zy}+\frac{z}{xy}\ge\frac{2}{y}\end{cases}}\)

\(\Rightarrow2\left(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}\right)\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\left(đpcm\right)\)

Vậy \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)

\(\Rightarrow2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)

Mà \(VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)

\(\Rightarrow VT\le\frac{3}{2}\) ( đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

28 tháng 10 2019

\(\text{Σ}\frac{x^2}{x^4+yz}\le\text{Σ}\frac{x^2}{2x^2\sqrt{yz}}=\text{Σ}\frac{1}{2\sqrt{yz}}\le\text{Σ}\frac{\frac{1}{y}+\frac{1}{z}}{4}=\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}{2}=\frac{\frac{xy+yz+xz}{xyz}}{2}=\frac{\frac{3\left(xy+yz+xz\right)}{x^2+y^2+z^2}}{2}\)(1)

Dễ dàng CM được: \(x^2+y^2+z^2\ge xy+yz+xz\)

Thay vào (1) -> dpcm

29 tháng 1 2021

Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)

CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)

\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)

Từ (1); (2) và (3) =>A =  \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)

      Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)

cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)

22 tháng 5 2019

Áp dụng BĐT Cô-si,ta có :

x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\)\(y^4+xz\ge2y^2\sqrt{xz}\)\(z^4+xy\ge2z^2\sqrt{xy}\)

\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

31 tháng 5 2020

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)

\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1

NV
4 tháng 1 2020

\(VT=\sum\frac{x^2}{x^4+yz}\le\sum\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2}\sum\frac{1}{\sqrt{yz}}\le\frac{1}{4}\sum\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{xy+yz+zx}{xyz}\right)\le\frac{1}{2}\left(\frac{x^2+y^2+z^2}{xyz}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

16 tháng 6 2020

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

3 tháng 8 2017

ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại rồi cộng lại :

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  khi đó

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

6 tháng 5 2017

cái này làm r` mà ngại lật lại làm lại vậy ==

Đặt \(THANG=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\) :D

Áp dụng BĐT AM-GM ta có:

\(x^4+yz\ge2\sqrt{x^4yz}=2x^2\sqrt{yz}\Rightarrow\frac{x^2}{x^4+yz}\le\frac{x^2}{2x^2\sqrt{yz}}\)

CỘng theo vế rồi thu gọn, nhóm,..... ta có:

\(THANG\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)

\(=\frac{1}{2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}\). Theo AM-GM có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\). Vậy

\(\frac{1}{2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3}{2}\)

Tức là \(THANG\le\frac{3}{2}\) khi \(x=y=z=1\)

21 tháng 10 2017

\(\frac{x}{3-yz}+\frac{y}{3-zx}+\frac{z}{3-xy}\le\frac{x}{3-\frac{y^2+z^2}{2}}+\frac{y}{3-\frac{z^2+x^2}{2}}+\frac{z}{3-\frac{x^2+y^2}{2}}\)

\(=\frac{2x}{3+x^2}+\frac{2y}{3+y^2}+\frac{2z}{3+z^2}\le\frac{2x}{4\sqrt[4]{x^2}}+\frac{2y}{4\sqrt[4]{y^2}}+\frac{2z}{4\sqrt[4]{z^2}}\)

\(=\frac{\sqrt{x}}{2}+\frac{\sqrt{y}}{2}+\frac{\sqrt{z}}{2}\le\frac{x^2+3}{8}+\frac{y^2+3}{8}+\frac{z^2+3}{8}\)

\(=\frac{3}{8}+\frac{9}{8}=\frac{3}{2}\)

21 tháng 10 2017

cách khác: cũng đến chỗ <= sigma 2x/3+x^2 

<= 2x/2(x+1) (do x^2+3=x^2+1+2>=2x+2) <= sigma x/x+1 = 3- sigma (1/x+1) 

sigma 1/x+1 >= 9/x+y+z+3 dễ rồi

4 tháng 10 2019

Áp dụng BĐT AM - GM ta có :

\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)

\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)

\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)

\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!