Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)
CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)
\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)
Từ (1); (2) và (3) =>A = \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)
Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)
cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)
Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)
\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{y^4+xz}\le\frac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\frac{z^2}{z^4+xy}\le\frac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{cases}}\)
\(\Rightarrow VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
Chứng minh rằng :
\(2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\frac{3}{4}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)
\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)
\(\Rightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\frac{x^2}{4x^2\sqrt{yz}}=\frac{1}{4\sqrt{yz}}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\frac{1}{4\sqrt{xz}}\\\frac{z^2}{\left(z^2+\sqrt{zy}\right)^2}\le\frac{1}{4\sqrt{xy}}\end{cases}}\)
\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\)
\(\le\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{xz}\right)\)
Chứng minh rằng : \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)
Theo đề bài ta có : \(x^2+y^2+z^2=3xyz\)
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=3\)
\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)
\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{x}+\frac{1}{y}}{2}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{1}{\sqrt{xz}}\le\frac{\frac{1}{x}+\frac{1}{z}}{2}\\\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{z}+\frac{1}{y}}{2}\end{cases}}\)
\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\frac{x}{yz}+\frac{y}{xz}\ge2\sqrt{\frac{1}{z^2}}=\frac{2}{z}\)
Tương tự ta có :
\(\hept{\begin{cases}\frac{y}{xz}+\frac{z}{xy}\ge\frac{2}{x}\\\frac{x}{zy}+\frac{z}{xy}\ge\frac{2}{y}\end{cases}}\)
\(\Rightarrow2\left(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}\right)\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\left(đpcm\right)\)
Vậy \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)
\(\Rightarrow2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)
Mà \(VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
\(\Rightarrow VT\le\frac{3}{2}\) ( đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
\(\text{Σ}\frac{x^2}{x^4+yz}\le\text{Σ}\frac{x^2}{2x^2\sqrt{yz}}=\text{Σ}\frac{1}{2\sqrt{yz}}\le\text{Σ}\frac{\frac{1}{y}+\frac{1}{z}}{4}=\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}{2}=\frac{\frac{xy+yz+xz}{xyz}}{2}=\frac{\frac{3\left(xy+yz+xz\right)}{x^2+y^2+z^2}}{2}\)(1)
Dễ dàng CM được: \(x^2+y^2+z^2\ge xy+yz+xz\)
Thay vào (1) -> dpcm
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)
=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)
+ \(x+y+z=2\)
Thay vào Pt (1)
=> \(xy+z\left(2-z\right)=1\)
=> \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)
=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)
Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)
+ \(x+y+z=-2\)
=> \(xy+z\left(-2-z\right)=1\)
=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)
=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)
=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)
TT => \(x,y,z\ge-\frac{4}{3}\)
Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)
\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)
Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Cauchy-Schwarz:
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)
\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)
\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)
Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)
Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)
Do đó \(\text{VT}\geq \text{VP}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
Áp dụng BĐT Cô-si,ta có :
x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\); \(y^4+xz\ge2y^2\sqrt{xz}\); \(z^4+xy\ge2z^2\sqrt{xy}\)
\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)
CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)
\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z = 1
\(VT=\sum\frac{x^2}{x^4+yz}\le\sum\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2}\sum\frac{1}{\sqrt{yz}}\le\frac{1}{4}\sum\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{xy+yz+zx}{xyz}\right)\le\frac{1}{2}\left(\frac{x^2+y^2+z^2}{xyz}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Ta có : \(\frac{x^3}{z+x^2}=\frac{x^3+xz-xz}{z+x^2}=x-\frac{xz}{z+x^2}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\ge x-\frac{z+1}{4}\) (Cosi)
Tương tự \(\hept{\begin{cases}\frac{y^3}{x+y^2}\ge y-\frac{x+1}{4}\\\frac{z^3}{y+z^2}\ge z-\frac{y+1}{4}\end{cases}}\)
\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)
Mà \(xy+yz+xz=3xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Rightarrow x+y+z\ge3\)
\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
bước cuối sai \(\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) trong khi \(3\le x+y+z\) ?? :D
cái này làm r` mà ngại lật lại làm lại vậy ==
Đặt \(THANG=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\) :D
Áp dụng BĐT AM-GM ta có:
\(x^4+yz\ge2\sqrt{x^4yz}=2x^2\sqrt{yz}\Rightarrow\frac{x^2}{x^4+yz}\le\frac{x^2}{2x^2\sqrt{yz}}\)
CỘng theo vế rồi thu gọn, nhóm,..... ta có:
\(THANG\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)
\(=\frac{1}{2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}\). Theo AM-GM có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\). Vậy
\(\frac{1}{2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3}{2}\)
Tức là \(THANG\le\frac{3}{2}\) khi \(x=y=z=1\)