\(x^2+y^2+z^2=3xyz\)

Tìm GTLN của biểu thức ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

16 tháng 6 2020

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

29 tháng 1 2021

Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)

CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)

\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)

Từ (1); (2) và (3) =>A =  \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)

      Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)

cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)

3 tháng 8 2017

ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại rồi cộng lại :

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  khi đó

\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

4 tháng 10 2019

Áp dụng BĐT AM - GM ta có :

\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)

\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)

\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)

\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

28 tháng 10 2019

Áp dụng bất đẳng thức Bunyakovsky 

\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{y^4+xz}\le\frac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\frac{z^2}{z^4+xy}\le\frac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{cases}}\)

\(\Rightarrow VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)

Chứng minh rằng :

\(2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\frac{3}{4}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)

\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)

\(\Rightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\frac{x^2}{4x^2\sqrt{yz}}=\frac{1}{4\sqrt{yz}}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\frac{1}{4\sqrt{xz}}\\\frac{z^2}{\left(z^2+\sqrt{zy}\right)^2}\le\frac{1}{4\sqrt{xy}}\end{cases}}\)

\(\Leftrightarrow\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\)

\(\le\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{xz}\right)\)

Chứng minh rằng : \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)

Theo đề bài ta có : \(x^2+y^2+z^2=3xyz\)

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=3\)

\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\)

\(\Leftrightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{x}+\frac{1}{y}}{2}\)

Tương tự ta có : \(\hept{\begin{cases}\frac{1}{\sqrt{xz}}\le\frac{\frac{1}{x}+\frac{1}{z}}{2}\\\frac{1}{\sqrt{xy}}\le\frac{\frac{1}{z}+\frac{1}{y}}{2}\end{cases}}\)

\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{x}{yz}+\frac{y}{xz}\ge2\sqrt{\frac{1}{z^2}}=\frac{2}{z}\)

Tương tự ta có :

\(\hept{\begin{cases}\frac{y}{xz}+\frac{z}{xy}\ge\frac{2}{x}\\\frac{x}{zy}+\frac{z}{xy}\ge\frac{2}{y}\end{cases}}\)

\(\Rightarrow2\left(\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}\right)\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\le3\left(đpcm\right)\)

Vậy \(\frac{1}{4}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\le\frac{3}{4}\)

\(\Rightarrow2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\frac{3}{2}\)

Mà \(VT\le2\left[\frac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\frac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\frac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)

\(\Rightarrow VT\le\frac{3}{2}\) ( đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

28 tháng 10 2019

\(\text{Σ}\frac{x^2}{x^4+yz}\le\text{Σ}\frac{x^2}{2x^2\sqrt{yz}}=\text{Σ}\frac{1}{2\sqrt{yz}}\le\text{Σ}\frac{\frac{1}{y}+\frac{1}{z}}{4}=\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}{2}=\frac{\frac{xy+yz+xz}{xyz}}{2}=\frac{\frac{3\left(xy+yz+xz\right)}{x^2+y^2+z^2}}{2}\)(1)

Dễ dàng CM được: \(x^2+y^2+z^2\ge xy+yz+xz\)

Thay vào (1) -> dpcm

22 tháng 5 2019

Áp dụng BĐT Cô-si,ta có :

x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\)\(y^4+xz\ge2y^2\sqrt{xz}\)\(z^4+xy\ge2z^2\sqrt{xy}\)

\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

31 tháng 5 2020

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)

\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1

NV
4 tháng 1 2020

\(VT=\sum\frac{x^2}{x^4+yz}\le\sum\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2}\sum\frac{1}{\sqrt{yz}}\le\frac{1}{4}\sum\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{xy+yz+zx}{xyz}\right)\le\frac{1}{2}\left(\frac{x^2+y^2+z^2}{xyz}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

21 tháng 9 2018

\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow xyz\le1\)

\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)

Ta co:

\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)

\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)

\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)

\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow A\ge xy+yz+zx\)

25 tháng 5 2020

Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))

Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)

\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)

\(\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z = 1