Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)
ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si \(\sqrt{ab}\)≤\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)≤\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
\(\dfrac{P}{\sqrt{2}}\)≤\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)
Câu hỏi của Liên Mỹ - Toán lớp 9 - Học toán với OnlineMath
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}\sqrt{xy-x}+\sqrt{y}\sqrt{xy-y})^2\)
\(\leq (x+y)(xy-x+xy-y)=(x+y)(2xy-x-y)\)
Áp dụng BĐT AM-GM:
\((x+y)(2xy-x-y)\leq \left (\frac{x+y+2xy-x-y}{2}\right)^2=(xy)^2\)
Do đó, \(A^2\leq (xy)^2\Leftrightarrow A\leq xy\) (đpcm)
Dấu bằng xảy ra khi \(x=y=2\)
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn