\(x+y=a+b;x^2+y^2=a^2+b^2\)

Chứng minh: \(x^3+y^3=a^3+b^3\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

1.a (3x-2y)2= (3x)2 - 2. 3x . 2y - (2y)= 9x2  - 12xy - 4y2

2.b (2x - 1/2)= (2x)2 - 2.2x.1/2 - (1/2)2= 4x2 - 2 - 1/4

3.c (x/2 - y) (x/2+y)= (x/2)2 - (y)2 = x/4 - y

3 tháng 8 2020

Bài 1 :

 \(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)

\(\left(2x-\frac{1}{2}\right)^2=4x^2-4x+\frac{1}{4}\)

\(\left(\frac{x}{2}-y\right)\left(\frac{x}{2}+y\right)=\frac{x^2}{4}-y^2\)

\(\left(x+\frac{1}{3}\right)^3=x^3+x^2+\frac{1}{3}x+\frac{1}{27}\)

\(\left(x-2\right)\left(x^2+2x+2^2\right)=x^3-8\)

24 tháng 9 2017

Từ \(x+y=a+b\Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\)

\(\Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\)

Do \(x^2+y^2=a^2+b^2\Rightarrow2xy=2ab\Rightarrow xy=ab\)

\(\Rightarrow-xy=-ab\)

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=a^3+b^3\)

Hay \(x^3+y^3=a^3+b^3\left(đpcm\right)\)

24 tháng 9 2017

Theo bài ra ta có :

\(x+y=a+b\\ \Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\\ \Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\\ \text{Mà }x^2+y^2\\ =a^2+b^2\\ \Rightarrow2xy=2ab\\ \Rightarrow xy=ab\\ \Rightarrow\left(x^2+y^2\right)-xy=\left(a^2+b^2\right)-ab\\ \Rightarrow x^2-xy+y^2= a^2-ab+b^2\\ \Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\\ \Rightarrow x^3+y^3=a^3+b^3\left(đpcm\right)\)

Vậy...........................................................(ghi lại đpcm)

15 tháng 8 2019

a) x^3+y^3>0=>x-y>0

x-y=x^3+y^3>x^3-y^3=(x-y)(x^2+xy+y^2)

=>x-y>(x-y)(x^2+xy+y^2) Do x-y>0 => 1>x^2+xy+y^2 =>1>x^2+y^2 b) a^2+b^2+ab+bc+ca<0 =>2a^2+2b^2+2ab+2bc+2ca<0 =>a^2+b^2-c^2+(a+b+c)^2<0 Mà (a+b+c)^2>=0 =>a^2+b^2-c^2<0 <=>a^2+b^2<c^2
18 tháng 9 2017

Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v

21 tháng 9 2017

Bài 1,2,3,4 đơn giản, tự làm :v

7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)

P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

5) ĐK: a>b>0

\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)

Tự phân tích

Mà a>b>0=> Chọn a=3b

Thay vào

Bài 6 tương tự bài 5

Có bất mãn chỗ nào thì ib nha bạn :))

16 tháng 8 2018

a. -(b-a)3= -b3+a3 (phá ngoặc trước có dấu trừ nên đổi dấu)

= a3 - b3 = (a-b)3

31 tháng 8 2018

b)

\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right)b+b^2\\ =a^2+2ab+b^2=\left(a+b\right)^2\)

7 tháng 7 2018

a.\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{y}{xy}+\dfrac{x}{xy}=\dfrac{x+y}{xy}\)

thay x+y=5 và xy=-2 vào đa thức trên ta có :

\(\dfrac{x+y}{xy}=\dfrac{5}{-2}\)=\(-\dfrac{5}{2}\)

6 tháng 7 2018

1/

a,\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{5}{-2}=\frac{-5}{2}\)

b, \(x^2+y^2=\left(x+y\right)^2-2xy=5^2-2.\left(-2\right)=25+4=29\)

c,\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.\left(-2\right).5=125+30=155\)

d,thiếu dữ kiện

2.

Ta có: a chia 7 dư 3 => a=7k+3 (k thuộc N)

=>\(a^2=\left(7k+3\right)\left(7k+3\right)=7k\left(7k+3\right)+3\left(7k+3\right)=7k\left(7k+3\right)+3.7k+3.3=7k\left(7k+3\right)+3.7k+7+2\)chia 7 dư 2

Vậy...

6 tháng 7 2018

M nhanh thật đấy hương

8 tháng 3 2019

a/ \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4-4y^8+8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4+4y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)

.............................................................................

\(\Leftrightarrow\frac{y}{x-y}=4\)

\(\Leftrightarrow5y=4x\)

8 tháng 3 2019

b/ Ta có:

\(a-b=a^3+b^3>0\)

Ta lại có:

\(a^2+b^2< a^2+b^2+ab\)

Ta chứng minh

\(a^2+b^2+ab< 1\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b=a^3+b^3\)

\(\Leftrightarrow a^3-b^3< a^3+b^3\)

\(\Leftrightarrow b^3>0\) (đúng)

Vậy ta có điều phải chứng minh