Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x + y = 2
=> \(\left(x+y\right)^2=4\)
<=> x2 + 2xy + y2 = 4
=> 2xy + 10 = 4
=> 2xy = -6
=> xy = -6
P = x3 + y3 = (x + y)(x2 - xy + y2)
= 2(10 + 6)
= 2.16
=32
Ta có
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\left(\left(y-1\right)^2\ge0\right)\)
\(\Leftrightarrow-1\le x\le1\)(1)
Ta lại có
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-2y^2+4y-3\)
\(=\left(-2y^2+4y-2\right)-1\)
\(=-1-2\left(y-1\right)^2\le-1\)
\(\Rightarrow x\le-1\)(2)
Từ (1) và (2) \(\Rightarrow x=-1\Rightarrow x^2=1\)
\(\Rightarrow y^2-2y+1=0\)
\(\Rightarrow y=1\Rightarrow y^2=1\)
\(\Rightarrow Q=x^2+y^2=1+1=2\)
\(x+y=2\) nên \(\left(x+y\right)^2=4\)
\(\Rightarrow x^2+y^2+2xy=4\)
\(\Rightarrow10+2xy=4\)
\(\Rightarrow2xy=-6\)
\(\Rightarrow xy=-3\)
Do đó \(x^3+y^3=\left(x+y\right).\left(x^2+y^2-xy\right)=2.\left[10-\left(-3\right)\right]=2.13=26\)
ta có:
(x+y)2=x2+y2+2xy
=>2xy=(x+y)2-(x2+y2)
=4-10
=-6
=>xy=-3
ta lại có:
x3+y3=x3+y3+3x2y+3xy2-3x2y-3xy2
=(x+y)3-3xy.(x+y)
=8-3.(-3).2
=8+18
=26
\(x^2+y^2+z^2=xy+xz+yz\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)
\(x^{2014}+y^{2014}+z^{2014}=3\Rightarrow3x^{2014}=3\Rightarrow x^{2014}=1\)
\(\Rightarrow x=y=z=\pm1\)
- Nếu \(x=y=z=1\Rightarrow L=1+1+1=3\)
- Nếu \(x=y=z=-1\Rightarrow L=-1+1-1=-1\)
a)
Ta có :
\(x+y=3\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\Leftrightarrow2xy=4\Rightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(5-2\right)=9\)
b)
Ta có :
\(x-y=5\)
\(x^2+y^2=15\Leftrightarrow\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\Rightarrow xy=-5\)
=> \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(5\right)\left(15+-5\right)=50\)
Ta có: x2 + y2 = 52 <=> (x + y)2 - 2xy = 52
<=> 102 - 2xy = 52 <=> 2xy = 48 <=> xy = 24
a) M = x3 + y3 = (x + y)3 - 3xy(x + y) = 103 - 3.10.24 = 280
b) N = x4 - y4 = (x - y)(x + y)(x2 + y2) = (x - y).10.[(x + y)2 - 2xy] = (x - y). 10(102 - 48) = 520(x - y)
Lại có: (x - y)2 = (x + y)2 - 4xy = 102 - 4.24 = 4 => x - y = 2
=> N = 520.2 = 1040
c) \(E=\frac{2}{x^2}+\frac{2}{y^2}=2\cdot\frac{x^2+y^2}{x^2y^2}=2\cdot\frac{\left(x+y\right)^2-2xy}{x^2y^2}=2\cdot\frac{10^2-48}{24^2}=\frac{13}{72}\)
x+ y = 2 => ( x + y)^2 = 2^2 = 4
=> x^2 + 2xy + y^2 = 4
=> 10 + 2xy = 4 => 2xy = - 6 => xy = - 3
thay vào ta có
x^3 + y^3 = ( x + y)(x^2 - xy + y^2)
= 2 ( 10 - ( - 3) ) = = 2 . 13 = 26