K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

x+y=1 suy ra x=1-y

xy=(1-y)y=y-y^2

=-y^2+y

=-(y^2-y)

=-(y^2-y+1/4-1/4)

=-(y-1/2)^2+1/4

 suy ra GTNN của biểu thức xy là 1/4 (do-(y-1/2)^2 bé hơn hoặc bằng 0 )

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

14 tháng 10 2015

rất tiếc em mới học lớp 6

20 tháng 1 2022

dhgxkkkkkkkkkkkkkkkkkkkkk

20 tháng 1 2022

jnymrjd,5

áp dụng bất đẳng thức cosy ta có:

x+y+1/(x+y)>=2*căn((x+y)(1/x+y) (=2)

vậy gtnn của bt trên là 2

15 tháng 7 2017

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= \(\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
<=> -3xy\(\ge\frac{-3}{4}\)
Ta có x3 + y3 = 1 - 3xy \(\ge1-\frac{3}{4}=\frac{1}{4}\)
Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)
Vậy GTNN của x3 + y3 là \(\frac{1}{4}\)khi x =  y = \(\frac{1}{2}\)

19 tháng 6 2022

Áp dụng bất đẳng thức Bunhiacopxki, ta có:

\(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1x+1y+1z\right)^2=\left(x+y+z\right)^2=1\)

 

\(\Rightarrow P\ge\dfrac{1}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

15 tháng 5 2021

Ta có: 3x + y = 1 => y = 1 - 3x

a, Thay y = 1 - 3x vào M, ta có:

\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)

\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)

Vậy GTNN M = 1/4 khi x = y = 1/4

b, Thay y = 1 - 3x vào N

\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)

\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)

Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)

Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2

NV
3 tháng 3 2021

\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)

\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)

\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)

12 tháng 8 2018

Aps dụng bđt coossi rồi tách ghepos nha bạn

12 tháng 8 2018

v cả quốc béo