K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

Ta có: y=\(\frac{2008-1003x}{2}\)

Để y nguyên dương => 2008-1003.x\(\ge\)0 => x\(\le\)2 và 2008-1003.x) phải là số chẵn => x là số chẵn

=> x={0; 2} => y=(1004; 1)

=> A=x2+y2 = 02+10042=10042

A=x2+y2 = 12+12=2

ĐS: A=2; A=10042

22 tháng 2 2018

bạn ơi câu 1 phương trình có đúng không vậy?

22 tháng 2 2018

Câu 1 : Cho \(\left(x_0;y_0\right)\)là nghiệm nguyên dương của phương trình 1003x+2y=2008. Biểu thức A= \(x_0^2+y_0^2\)có giá trị bằng?

3 tháng 10 2016

Hai câu còn lại bạn tự làm nhé :)

3 tháng 10 2016

1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Suy ra MIN A = \(-\sqrt{2}\)khi  \(x=y=z=-\frac{\sqrt{2}}{3}\)

12 tháng 12 2017

a)  Cộng từng vế 2 Pt  có :   3x+2z=5\(=>x=\frac{5-2z}{3}\)Thay vào pt1 tìm đc y....

12 tháng 12 2017

lm đc câu b rồi nhưng lười nhấn máy tính lắm nên có j nhắn tin cho mk sau nhé

23 tháng 3 2020

a) Thay m vào phương trình, ta có:

\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)

Thay giá trị đã có của x vào phương trình

\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)

\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)

Thay giá trị của y vào phương trình:

\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)

\(\Rightarrow x=13-5\sqrt{2}\)

4 tháng 4 2016

Đặt \(\sqrt{x^2+2y+1}\) =a thì phương trình trở thành a2 -1 +a =1 giải ra được a=1 hoặc a=-2

mà a > 0 suy ra a=1 suy ra x2 +2y =0 mà 2x + y =2 suy ra x- 4x -4 =0 suy ra x=2 y= -2

x02 + y02 = 8

4 tháng 4 2016

=8 nha chi

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).