Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm của (d1) và (d2) là:
\(x+1-(mx+2-m)=0\)
\(\Leftrightarrow x(1-m)-1+m=0\)
\(\Leftrightarrow (x-1)(1-m)=0\)
Nếu $m=1$ thì \((d_2):y=x+1\) trùng với (d1) do đó 2 đt này không thể có giao điểm.
Do đó \(m\neq 1\Rightarrow 1-m\neq 0\Rightarrow x-1=0\Rightarrow x=1\)
Từ đó: \(y=x+1=1+1=2\)
Vậy giao điểm của 2 ĐTHS là: \((x_0,y_0)=(1,2)\Rightarrow T=x_0^2+y_0^2=1^2+2^2=5\)
Lấy pt 1 cộng vế với vế của pt 2 ta được
\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)
từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)
Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)
Vậy ..........
\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)
\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
Đặt \(\sqrt{x^2+2y+1}\) =a thì phương trình trở thành a2 -1 +a =1 giải ra được a=1 hoặc a=-2
mà a > 0 suy ra a=1 suy ra x2 +2y =0 mà 2x + y =2 suy ra x2 - 4x -4 =0 suy ra x=2 y= -2
x02 + y02 = 8
=8 nha chi