\(T=x_0^2+y_0^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

Đặt \(\sqrt{x^2+2y+1}\) =a thì phương trình trở thành a2 -1 +a =1 giải ra được a=1 hoặc a=-2

mà a > 0 suy ra a=1 suy ra x2 +2y =0 mà 2x + y =2 suy ra x- 4x -4 =0 suy ra x=2 y= -2

x02 + y02 = 8

4 tháng 4 2016

=8 nha chi

23 tháng 2 2016

x0+y0+\(\frac{\sqrt{3}}{2}\)=\(\frac{1}{2}\)

23 tháng 2 2016

Nhân pt (1) với căn3 + 1 để ra 2y

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Lời giải:

PT hoành độ giao điểm của (d1) và (d2) là:

\(x+1-(mx+2-m)=0\)

\(\Leftrightarrow x(1-m)-1+m=0\)

\(\Leftrightarrow (x-1)(1-m)=0\)

Nếu $m=1$ thì \((d_2):y=x+1\) trùng với (d1) do đó 2 đt này không thể có giao điểm.

Do đó \(m\neq 1\Rightarrow 1-m\neq 0\Rightarrow x-1=0\Rightarrow x=1\)

Từ đó: \(y=x+1=1+1=2\)

Vậy giao điểm của 2 ĐTHS là: \((x_0,y_0)=(1,2)\Rightarrow T=x_0^2+y_0^2=1^2+2^2=5\)

5 tháng 3 2017

Lấy pt 1 cộng vế với vế của pt 2 ta được

\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)

từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)

Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)

Vậy ..........

4 tháng 3 2017

m=5

20 tháng 5 2020

\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)

\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)