Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài cho x+y=2
vậy : \(\left(x+y\right)^2=4\) định lí Mori
\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)
mặt khác ta có
\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)
suy ra
\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)
có x+y=2
\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)
ta lại có
\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)
\(p\le\frac{\left(4-2xy\right)^2}{2}\)
có 2xy=2 ( cmr)
\(P\le\frac{\left(4-2\right)^2}{2}=2\)
vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1
Áp dụng BĐT Cô-si cho 2015 số dương : x2015,x2015 và 2013 số 1. Ta có :
\(x^{2015}+x^{2015}+1+1+...+1\ge2015\sqrt[2015]{\left(x^2\right)^{2015}}=2015x^2\)
TT : \(y^{2015}+y^{2015}+1+1+...+1\ge2015y^2\)
\(z^{2015}+z^{2015}+1+1+...+1\ge2015z^2\)
Cộng 3 vế BĐT , ta được :
\(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)
\(\Rightarrow x^2+y^2+z^2\le3\)
Dấu ' = " xảy ra khi x = y = z = 1
\(P=\frac{x}{x+1}+\frac{y}{y+1}=2-\frac{1}{x+1}-\frac{1}{y+1}\)
\(\le2-\frac{4}{2+x+y}=2-\frac{4}{2+1}=\frac{2}{3}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b1: x+2y=1 => x=1-2y
P=4xy=4y(1-2y)=4y-8y2
Ta có: y2>=0(với mọi x)
=>8y2>=0(với mọi x)
=>-8y2<=0(với mọi x)
=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)
Do đó, GTLN của P là 4y khi:y=0
Vậy GTLN của P là 0
b3: Ta có: x^4>=0(với mọi x)
=>x^4+4>=4(với mọi x)
=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)
Do đó, GTLN của A là x^2/4 khi x=0
Vậy GTLN của A là 0 tại x=0
b4:\(M=x-2.\sqrt{x-5}\)
Ta có: \(\sqrt{x-5}\)>=0(với mọi x)
=>2.\(\sqrt{x-5}\)>=0(với mọi x)
=>-2.\(\sqrt{x-5}\)<=0(với mọi x)
=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)
Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0
x-5=0
x=0+5=5
Vậy GTLN của M là 5 tại x=5
Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:
P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]
=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)
Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)0
=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)
Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
\(xy\le\dfrac{1}{4}\left(x+y\right)^2=\dfrac{2015^2}{4}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2015}{2}\)