K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

AM-GM là ra thôi

13 tháng 2 2018

đề bài cho x+y=2

vậy : \(\left(x+y\right)^2=4\)  định lí Mori 

\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)

mặt khác ta có

\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)

suy ra

\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)

có x+y=2 

\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)

ta lại có

\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)

\(p\le\frac{\left(4-2xy\right)^2}{2}\)

có 2xy=2 ( cmr)

\(P\le\frac{\left(4-2\right)^2}{2}=2\)

vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1

10 tháng 3 2018

https://diendantoanhoc.net/topic/167848-x2y2z2xyz4-max-xyz/

28 tháng 4 2019

mk co nen nghe ban than da tung phan boi mk ko... 

18 tháng 2 2018

\(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x+y\right)^2+4xy}{\left(x+y\right)^2}=\frac{2.2012^2+4xy}{2012^2}\)

\(\le\frac{2.2012^2+4.\frac{\left(x+y\right)^2}{4}}{2012^2}=\frac{2.2012^2+2012^2}{2012^2}=\frac{3.2012^2}{2012^2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1006\)

18 tháng 2 2018

anh hùng giải thích cho em cái chỗ  \(\frac{4.\left(x+y\right)^2}{4}\) với

29 tháng 12 2019

\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Vì x>0, y>0 nên xy>0

Áp dụng bất đẳng thức Cô si cho 2 số dương

\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)

Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)

Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

\(\Rightarrow Q\ge4+2+5+2016=2027\)

Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)

27 tháng 11 2019

\(P=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\frac{\left(x+y+x+y\right)^2}{x^2+y^2+2xy}+\frac{4xy}{2xy}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

"=" xảy ra <=> x = y.

\(\)

13 tháng 8 2016

\(x^2+y^2\le x+y\Leftrightarrow\left(2x-1\right)^2\le-4y^2+4y+1\text{ (1)}\)

+Nếu \(-4y^2+4y+1< 0\) thì (1) có \(VT\ge0>VP\), (1) ko thỏa --> loại.

+Nếu \(-4y^2+4y+1=0\Leftrightarrow y=\frac{1+\sqrt{2}}{2}\text{ }\left(do\text{ }y>0\right)\) thì\(\left(2x-1\right)^2\le0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

\(A=x+3y=2+\frac{3}{\sqrt{2}}\approx4.12\)

+Xét \(-4y^2+4y+1>0\Leftrightarrow\frac{1-\sqrt{2}}{2}< y< \frac{1+\sqrt{2}}{2}\)

\(\Rightarrow0< y< \frac{1+\sqrt{2}}{2}\approx1.207\)

\(\left(1\right)\Leftrightarrow-\sqrt{-4y^2+4y+1}\le2x-1\le\sqrt{-4y^2+4y+1}\)

\(\Rightarrow2x\le\sqrt{2-\left(2y-1\right)^2}+1\)

\(2A=2x+6y\le\sqrt{2-\left(2y-1\right)^2}+3\left(2y-1\right)+1+3\)

Áp dụng bđt Bu-nhia-cop-xki

\(1.\sqrt{2-\left(2y-1\right)^2}+3.\left(2y-1\right)\le\sqrt{1^2+3^2}.\sqrt{2-\left(2y-1\right)^2+\left(2y-1\right)^2}=2\sqrt{5}\)

Dấu bằng xảy ra khi \(\frac{1}{3^2}=\frac{2-\left(2y-1\right)^2}{\left(2y-1\right)^2}\Leftrightarrow\left(2y-1\right)^2=\frac{9}{5}\)

\(\Leftrightarrow2y-1=\pm\frac{3}{\sqrt{5}}\Leftrightarrow\orbr{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\approx1.17\in\left(0;\frac{1+\sqrt{2}}{2}\right)\\y=-\frac{3}{2\sqrt{5}}+\frac{1}{2}< 0\end{cases}}\)

\(\Rightarrow2A\le4+2\sqrt{5}\)

\(\Rightarrow A\le2+\sqrt{5}\approx4.23\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\\x=\frac{1+\sqrt{2-\left(2y-1\right)^2}}{2}=\frac{1}{2\sqrt{5}}+\frac{1}{2}\end{cases}}\)

12 tháng 8 2016

.Điểm rơi \(x=y=1\)

\(A\le4\)

Kết thúc chứng minh.

15 tháng 9 2019

Hinh nhu de bai sai thi phai

15 tháng 9 2019

đề đúng rồi bạn ơi

gán làm giúp mình nha.cảm ơn bạn