Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)
Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)
\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)
\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
(x - 5)² = (3 + 2x)²
(x - 5)² - (3 + 2x)² = 0
[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0
(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0
(-x - 8)(3x - 2) = 0
-x - 8 = 0 hoặc 3x - 2 = 0
*) -x - 8 = 0
-x = 8
x = -8
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = -8; x = 2/3
--------------------
27x³ - 54x² + 36x = 9
27x³ - 54x² + 36x - 9 = 0
27x³ - 27x² - 27x² + 27x + 9x - 9 = 0
(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0
27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0
(x - 1)(27x² - 27x + 9) = 0
x - 1 = 0 hoặc 27x² - 27x + 9 = 0
*) x - 1 = 0
x = 1
*) 27x² - 27x + 9 = 0
Ta có:
27x² - 27x + 9
= 27(x² - x + 1/3)
= 27(x² - 2.x.1/2 + 1/4 + 1/12)
= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R
⇒ 27x² - 27x + 9 = 0 (vô lí)
Vậy x = 1
A = x² + y²
= x² - 2xy + y² + 2xy
= (x - y)² + 2xy
= 4² + 2.1
= 16 + 2
= 18
B = x³ - y³
= (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + xy + 2xy)
= (x - y)[(x - y)² + 3xy]
= 4.(4² + 3.1)
= 4.(16 + 3)
= 4.19
= 76
C = x⁴ + y⁴
= (x²)² + (y²)²
= (x²)² + 2x²y² + (y²)² - 2x²y²
= (x² + y²)² - 2x²y²
= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²
= [(x - y)² + 2x²y²]² - 2x²y²
= (4² + 2.1²)² - 2.1²
= (16 + 2)² - 2
= 18² - 2
= 324 - 2
= 322
Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)
\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)
\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)
\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)
\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)
\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)
\(=-33+4\left(1+1+1\right)^2=-33+36=3\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(P_{min}=3\)khi \(x=y=z=1\)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)
Cách làm:
(1+x4)(1+y4)
Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:
\(\left[1+\left(x^2\right)^2\right]+\left[x+\left(y^2\right)^2\right]\ge\left(x^2+y^2\right)^2\)
\(\left[1+\left(x^2\right)\right]^2+\left[1+\left(y\right)^2\right]^2\ge\left[\left(x+y\right)^2-2xy\right]^2\)
Để đạt Min thì \(\left(1+x^4\right)\left(1+y^4\right)=\left[\left(x+y\right)^2-2xy\right]\)
Đặt xy=t, ta có:
\(P=\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)+\left(3xy-1\right)\)
\(\Leftrightarrow P=\left[\left(x+y\right)^2-2t\right]^2+4\left(t-1\right)+\left(3t-1\right)\)
\(\Leftrightarrow P=\left(4-2t\right)^2+\left(4t-4\right)\left(3t-1\right)\)
\(\Leftrightarrow P=16-16t+4t^2+12t^2-16t+4\)
\(\Leftrightarrow P=16t^2-32t+16+4\)
\(\Leftrightarrow P=\left(4t-4\right)^2+4\)
Ta có: \(\left(4t-4\right)^2\ge0\)
\(\Rightarrow\left(4t-4\right)^2+4\ge4\)
\(\Rightarrow Min_P=4\)
@Phương An
\(P=\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)\left(3xy-1\right)\)
Vì \(\left(1+x^4\right)\ge1;\left(1+y^4\right)\ge1\) => Để \(P_{min}\Leftrightarrow4\left(xy-1\right)\left(3xy-1\right)\)
\(\Rightarrow4\left(xy-1\right)\left(3xy-1\right)=0\Leftrightarrow\left(xy-1\right)=0\)
Mà \(x+y=2\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thì \(\left(xy-1\right)=0\)
\(\Rightarrow\left(1+1^4\right)\cdot\left(1+1^4\right)+4\cdot\left(1\cdot1-1\right)\left(3\cdot1\cdot1-1\right)\)
\(\Rightarrow2\cdot2+0\)
\(\Rightarrow P_{min}=4\)
Câu 1: x^3+y^3+3xy
=(x+y)^3-3xy(x+y)+3xy
=(x+y)^3-3xy+3xy
=1
Câu 2:
x^3-y^3-3xy
=(x-y)^3+3xy(x-y)-3xy
=1^3
=1
Câu 3:
\(x^2+y^2=\left(x+y\right)^2-2xy=4-2\cdot\left(-15\right)=4+30=34\)
Câu 4:
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-8-3\cdot\left(-2\right)\cdot\left(-15\right)=-8-3\cdot30=-98\)
Câu 5: B
Câu 6: C
Câu 7: B
Câu 8: D
Câu 10: B
1) Nếu x+y=1, thì giá trị của biểu thức x3+y3+3xy là
A.2
B.3
C.4
D.cả A,B,C đều sai
2)Nếu x-y=1, thì giá trị của biểu thức x3-y3-3xy là
A.1
B.2
C.3
D.4
3) Cho x+y= -2, xy=-15 thì giá trị của biểu thức x2+y2 là.
A) 30 ; B) 32 ;C) 28 ; D) Cả A và B đều sai.
4) Với giả thiết bài 3, ta có giá trị của biểu thức x3+y3 là:
A) 80 ; B) 81; C) 82 ; D) Một kết quả khác
5) Với giả thiết bài 3, ta có giá trị của biểu thức x4+y4 là:
A. 706 ; B. 702 ; C. 708 ; D. 704
6)Giá trị nhỏ nhất của biểu thức P= x(x+1)(x+2)(x+3) là
A. 1 ; B. 2 ; C. -1 ; D.-2
7)Cho biểu thức M=2x2+9y2- 6xy-6x-12y+2037 . Giá trị nhỏ nhất của biểu thức M là
A. 2007 ; B. 2008 ; C; 2009 ; D. 2010
8) Với giả thiết bài 7 , biểu thức M đạt giá trị nhỏ nhất khi
A)x=5;y= 7/3
B)x= -5; y= 7/3
C) x=5; y= -7/3
D)cả A và C đều sai
9) Cho biểu thức Q= 2xy+6x-2y-2x2-y2+ 2015 .Giá trị lớn nhất của biểu thức Q là
A. 2010 ; B. 2012 ; C. 2020 ; D. Một kết quả khác
hôm qua thì tui cũng gặp bài này nè nhưng không biết làm , khó quá !
tui chỉ biết kq =4 nhưng k biết cách làm