K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Áp dụng BĐT Cauchy - schwarz ta có

\(P=\frac{4}{x}+\frac{9}{y}=\frac{2^2}{x}+\frac{3^2}{y}\ge\frac{\left(2+3\right)^2}{x+y}=25\)

7 tháng 5 2017

1/x +1/y >= 4 / x+y  

               >=4 :4/3

                >=3

F >= 4/3 +3

F>= 13/3 

Dau = xay ra <=> x=y=2/3

30 tháng 12 2017

một khu đất hình chữ nhật có chu vi bằng 65 chiều rộng bằng 1/4 chiều dai, nguoi ta đao ao hết 62,5%diện tích khu đấtdiện tích còn lại để trồng hoa.Tính dienj tích tròng hoa?

30 tháng 12 2017

\(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}\)

\(=1-\frac{x^2+y^2}{x^2y^2}+\frac{1}{x^2y}\)

\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)

\(=1-\frac{1}{x^2y^2}+\frac{2xy}{x^2y^2}+\frac{1}{x^2y^2}\)

\(=1+\frac{2}{xy}\)

Lại có: \(4xy\le\left(x+y\right)^2\)

\(\Rightarrow xy\le\frac{1}{4}\)

\(\Rightarrow\frac{2}{xy}\ge8\)

\(\Rightarrow A\ge9\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy.......

28 tháng 5 2015

x + y = 10 => y = 10 - x

\(S=\frac{1}{x}+\frac{1}{y}=\frac{y+x}{xy}=\frac{10}{x\left(10-x\right)}=\frac{10}{10x-x^2}\)

10x - x2 = - (x2 - 10x + 25) + 25 = - (x - 5)2 + 25 \(\le\) 25 với mọi x

=> \(S=\frac{10}{10x-x^2}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy Min S = \(\frac{2}{5}\) khi x - 5 = 0 hay x = 5 => y = 5

28 tháng 5 2015

làm bài trên đi kìa ngồi đó mà bàn về lớp

12 tháng 3 2017

ta có ; A=((x+2012)/x)^2 + ((y+2012)/y)^2

  hay A  =((x+x+y)/x)^2+((y+x+y)/x)^2

            =((2x+y)/x)^2 + ((2x+y)/x)^2

            =(2+y/x)^2 + (2+x/y)^2

đặt x/y=k ta có ;

A=(2+k)^2 + (2+1/k)^2

  =4+4k+k^2+4+4/k+1/k^2 

   \(\ge\)\(2\sqrt{4k.\frac{1}{4k}}\)+\(2\sqrt{k^2.\frac{1}{k^2}}\)\(+8\)(\(BAT\)\(DANG\)\(THUC\)\(COSI\))

   \(=\)\(2\sqrt{1}+2\sqrt{16}+8=2+8+8=18\)

\(_{ }\)vậy max A = 18

4 tháng 10 2017

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

4 tháng 10 2017

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.

5 tháng 7 2018

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

5 tháng 7 2018

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1