Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thực hiện tách P:
\(P=5x+3y+\frac{12}{x}+\frac{16}{y}\)
\(P=2(x+y)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)
Theo đề bài: \(x+y\geq 6\Rightarrow 2(x+y)\geq 12\)
Áp dụng BĐT AM-GM ta có:
\(3x+\frac{12}{x}\geq 2\sqrt{3x.\frac{12}{x}}=12\)
\(y+\frac{16}{y}\geq 2\sqrt{y.\frac{16}{y}}=8\)
Do đó: \(P\geq 12+12+8=32\)
Vậy GTNN của \(P=32\Leftrightarrow (x,y)=(2,4)\)
\(p=\left(3x+\frac{12}{x}-12\right)+\left(y+\frac{16}{y}-8\right)+2\left(x+y\right)+20\)
\(p=\frac{3x^2-12x+12}{x}+\frac{y^2-8y+16}{y}+2\left(x+y\right)+20\)
\(p=\frac{3\left(x-2\right)^2}{x}+\frac{\left(y-4\right)^2}{y}+2\left(x+y\right)+20\)
\(p\ge2\cdot6+20=32\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-2\right)^2=0\\\left(y-4\right)^2=0\\x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy Min p = 32 \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Bn đăng bài lên xong nói mình làm được r thế đăng lên làm gì vậy bạn?
Đặt \(P=\frac{x^3}{y+z}+\frac{y+z}{4}\ge x;\frac{y^2}{z+x}+\frac{z+x}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)
\(\Rightarrow P\ge x+y+x-\frac{x+y+z}{2}=\frac{x+y+z}{2}=\frac{4}{2}=2\)
1/x +1/y >= 4 / x+y
>=4 :4/3
>=3
F >= 4/3 +3
F>= 13/3
Dau = xay ra <=> x=y=2/3
Gợi ý nhé! Tách rồi sử dụng Cauchy cho hai số ko âm
\(P=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)
\(\ge2\sqrt{3.12}+2\sqrt{16}+2.6=32\)
"=" xảy ra <=> x=2; y=4
Ta có : \(P=5x+3y+\frac{12}{x}+\frac{16}{y}\)
\(P=2\left(x+y\right)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)
Áp dụng BĐT Cô-si, ta có: \(3x+\frac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\)
\(y+\frac{16}{y}\ge2\sqrt{\left(1.16\right)}=8\)
Ta có: \(x+y\ge6\)
\(\Rightarrow2\left(x+y\right)\ge12\)
\(\Rightarrow P\ge12+12+8=32\)
Dấu''='' xảy ra khi:
\(3x=\frac{12}{x}\) , \(x+y=6\) , \(y=\frac{16}{y}\)
\(\Rightarrow x=2,y=4\)
Vậy giá trị nhỏ nhất của P là 32 khi x = 2, y = 4