Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOAB và ΔOCD có
\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\left(=\dfrac{3}{2}\right)\)
\(\widehat{AOB}\) chung
Do đó: ΔOAB\(\sim\)ΔOCD(c-g-c)
Bổ sung ĐK : ^xOy \(\ne\)1800
Xét tam giác AOB và tam giác COA ta có :
O _ chung
\(\frac{OA}{OC}=\frac{OB}{OA}=\frac{4}{8}=\frac{2}{4}=\frac{1}{2}\)
Vậy tam giác AOB ~ tam giác COA ( c.g.c )
a: Xét ΔAOE và ΔBOF có
OA/OB=OE/OF(4/6=2/3)
\(\widehat{AOE}=\widehat{BOF}\)
Do đó: ΔAOE\(\sim\)ΔBOF
b: TA có: ΔAOE\(\sim\)ΔBOF
nên AE/BF=OE/OF
=>2,4/BF=2/3
hay BF=3,6(cm)
a: Xet ΔOCB và ΔOAD có
OC/OA=OB/OD
góc O chung
=>ΔOCB đồng dạng với ΔOAD
b: ΔOCB đồng dạng với ΔOAD
=>góc OCB=góc OAD
=>góc IAB=góc ICD
=>góc IBA=góc IDC; góc AIB=góc CID
a: Xet ΔOCB và ΔOAD có
OC/OA=OB/OD
góc O chung
=>ΔOCB đồng dạng với ΔOAD
b: ΔOCB đồng dạng với ΔOAD
=>góc OCB=góc OAD
=>góc IAB=góc ICD
=>góc IBA=góc IDC; góc AIB=góc CID
Xet ΔOAB và ΔODC có
OA/OD=OB/OC
góc AOB=góc DOC
=>ΔOAB đồng dạng với ΔODC