Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: MA=MB
Tự vẽ hình nhé ?
a) Vì Ot là tia phân giác của ∠xOy (GT)
=> ∠xOt = ∠yOt (tính chất)
Hay ∠AOM = ∠BOM (1)
Vì MA ⊥ Ox (GT)
=> ∠OAM = 90o (ĐN) (2)
Vì MB ⊥ Oy (GT)
=> ∠OBM = 90o (ĐN)
Mà ∠OAM = 90o (ĐN) (Theo (2))
=> ∠OAM = ∠OBM = 90o (3)
Xét ∆MOA và ∆MOB có :
∠OAM = ∠OBM = 90o (Theo (3))
OM chung
∠AOM = ∠BOM (Theo (1))
=> ∆MOA = ∆MOB (cạnh huyền - góc nhọn) (4)
=> MA = MB (2 cạnh tương ứng)
b) Xét ∆MOA vuông tại A có :
OA2 + MA2 = OM2 (ĐL pi-ta-go)
Mà OA = 8cm (GT), OM = 10cm (GT)
=> 82 + MA2 = 102
=> 64 + MA2 = 100
=> MA2 = 100 - 64
=> MA2 = 36
=> MA2 = \(\sqrt{36}\)
=> MA = 6cm
c) Từ (4) => OA = OB (2 cạnh tương ứng) (5)
Xét ∆IOA và ∆IOB có :
OA = OB (Theo (5))
∠AOI = ∠BOI (Theo (1))
OI chung
=> ∆IOA = ∆IOB (c.g.c) (6)
=> IA = IB (2 cạnh tương ứng)
Mà I nằm giữa A và B
=> I là trung điểm của AB (7)
Từ (6) => ∠AIO = ∠BIO (2 góc tương ứng)
Mà ∠AIO + ∠BIO = 180o (2 góc kề bù)
=> ∠AIO = ∠BIO = 180o : 2 = 90o
=> OI ⊥ AB (ĐN) hay OM ⊥ AB (8)
Từ (7), (8) => OM là đường trung trực của AB (đpcm)
Vậy ...
a: Xét ΔOMA vuông tại A và ΔOMB vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOMA=ΔOMB
Suy ra: MA=MB và OA=OB
hay ΔOBA cân tại O
b: Xét ΔOAE vuông tại A và ΔOBD vuông tại B có
OA=OB
\(\widehat{AOE}\) chung
Do đó: ΔOAE=ΔOBD
Suy ra: OD=OE
Xét ΔMAD vuông tại A và ΔMBE vuông tại B có
AD=BE
\(\widehat{MDA}=\widehat{MEB}\)
Do đó: ΔMAD=ΔMBE
Suy ra: MD=ME
c: Ta có: ΔODE cân tại O
mà OM là phân giác
nên OM vuông góc với DE
tự kẻ hình nha
a) vì M thuộc tia phân giác của xOy=> M cách đều Ox,Oy=> MA=MB
xét tam giác OBM và tam giác OAM có
OBM=OAM(=90 độ)
OM chung
BOM=AOM( gt)
=> tam giác OBM= tam giác OAM(ch-gnh)
=> OA=OB( hai cạnh tương ứng)
=> tam giác ABO cân O
b) vì M thuộc tia phân giác của góc xOy=>ME=MD
c) vì BD,AE,OM cùng giao nhau tại M
mà BD,AE là đường cao => OM là đường cao ( 3 đường cao cùng đi qua một điểm)
=> OM vuông góc với DE