K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 11 2020

\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Leftrightarrow x^2yz+xz=xy^2z+xy=xyz^2+yz\)

\(\Leftrightarrow\hept{\begin{cases}xyz\left(x-y\right)=x\left(y-z\right)\\xyz\left(y-z\right)=y\left(z-x\right)\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}xyz\left(x-y\right)=x\left(y-z\right)\\xyz\left(y-z\right)=y\left(z-x\right)\\xyz\left(z-x\right)=z\left(y-x\right)\end{cases}}\Leftrightarrow x^3y^3z^3.\left(x-y\right)\left(y-z\right)\left(z-x\right)=-xyz.\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x^3y^3z^3=-xyz\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}xyz=\pm1\\x=y=z\end{cases}}}\)

21 tháng 7 2020

đây là bài bất IMO 2008 

Đặt \(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)từ đó giả thiết trở thành 

\(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)Suy ra được : \(a+b+c-ab-bc-ca=1\)

Bài toán bây giờ trở thành chứng minh \(a^2+b^2+c^2\ge2\left(a+b+c-ab-bc-ca\right)-1\)

\(< =>\left(a+b+c-1\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

5 tháng 11 2018

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{3}\)

\(\Rightarrow3.\left(xy+yz+zx\right)=xyz\)(1)

Lại có: \(x+y+z=3\)

\(\Rightarrow\left(x+y+z\right)^2=3^2\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=9\)

Mà: \(x^2+y^2+z^2=17\)

\(\Rightarrow17+2xy+2yz+2xz=9\)

\(\Rightarrow2xy+2yz+2xz=-8\)

\(\Rightarrow xy+yz+zx=-4\)(2)

Thay (2) vào (1) ta có:

\(3.\left(-4\right)=xyz\)

\(xyz=-12\)

Vậy \(xyz=-12\)

Tham khảo nhé~

24 tháng 1 2018

Cái bài này bạn làm đc chưa? Hướng dẫn mk ik. >.<

11 tháng 10 2018

Đề kêu chứng minh gì vậy bạn?

28 tháng 2 2018

1 slot tối làm cho.Giờ đi học đã =))

28 tháng 2 2018

\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)

\(\Rightarrow7\left(x+y+z\right)=42\)

\(\Leftrightarrow x+y+z=6\)

8 tháng 3 2017

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

11 tháng 3 2017

?????????????????????????

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>

11 tháng 12 2019

x binh + y binh + z binh = 1

11 tháng 12 2019

Bạn giải chi tiết đc k?