Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$
$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$
$\Rightarrow x=y=z$.
Do đó:
$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$
$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$
$\Rightarrow x=y=z$.
Do đó:
$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
x2=yz => \(\frac{x}{y}=\frac{z}{x}\)
\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
áp dụng ... ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)
\(\frac{x}{y}=1\Rightarrow x=y\)
\(\frac{z}{x}=1\Rightarrow z=x\)
=>x=y=z
Ta có x2=yz nên x/y=z/x(1)
y2=xz nên x/y=y/z(2)
z2=xy nên z/x=y/z(3)
Từ 1,2,3 suy ra x/y=z/x=y/z(4)
áp dụng t/c dãy tỉ số bằng nhau vào 4 có
x/y=z/x=y/z=x+y+z/x+y+z
vì x, y,z khác 0 nên x+y+z Khác 0
suy ra x+y+z/z+x+y=1
suy ra x/y=z/x=y/z=1
suy ra x=y; x=z; y=z
C2 :
Từ x2=yz⇒xz=yx(1)
Từ y2=xz⇒yx=zy(2)
Từ z2=xy⇒zy=xz(3)
Từ (1) , (2) và (3) ⇒xz=yx=zy
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
xz=yx=zy=x+y+zz+x+y=1
Khi đó : xz=1⇒x=z
yx=1⇒y=x
zy=1⇒z=y
Ta có: x2=yz,y2=xz,z2=xy
=>x2+y2+z2=yz+xz+xy
=>2x2+2y2+2z2=2xy+2yz+2xz
=>2x2+2y2+2z2-2xy-2yz-2xz=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0
=>(x2-2xy+x2)+(y2-2yz+y2)+(z2-2xz+z2)=0
=>(x-y)2+(y-z)2+(z-x)2=0
Ta thấy : (x-y)2>0 với mọi x,y
(y-z)2>0 với mọi y,z
(z-x)2>0 với mọi x,z
=>(x-y)2+(y-z)2+(z-x)2>0 với mọi x,y,z
Mà (x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x-y=y-z=z-x=0
=>x=y=z
Đặt x2 = yz (1) ; y2 = xz (2) ; z2 = xy (3)
Từ (1) => z= x2/y. Từ (2) => z = y2/x => x2/y = y2/x => x3 = y3 => x = y (*)
Tương tự : Từ (1) => y =x2/z. Từ (3) => y = z2/x => x2/z = z2/x => x3 = z3 => x = z(**)
Từ (*) và (**) suy ra x = y = z