Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1
2x2+2y2-xy=1=>x2+y2=\(\dfrac{1+xy}{2}\)
thay vào P,ta được:
P=7.(\(\dfrac{1+xy}{2}\))+4x2y2
=>2P=7+7xy+8x2y2=2(4x2y2+2.\(\dfrac{7}{4}\)xy+\(\dfrac{49}{16}\))+\(\dfrac{7}{8}\)
=2(2xy+\(\dfrac{7}{4}\))2+\(\dfrac{7}{8}\)
=>P=(2xy+\(\dfrac{7}{4}\))2+\(\dfrac{7}{16}\)\(\ge\)\(\dfrac{7}{16}\)
first, cách này ko khả thi. second, min=7/16 là sai đố bn tìm dc dấu "=" thỏa mãn.. Finally, là phần gợi ý đáp án :
-Min=74/25 khi x=-1/căn 5; y=1/căn 5 hoặc x=1/căn 5; y=-1/căn 5
-Max=16/9 khi x=-1/căn 3; y=1/căn 3 hoặc x=1/căn 3; y=-1/căn 3
\(x=P+2y-3\)
\(\Rightarrow\left(P+2y-3\right)^2+\left(P+2y-3\right).y+2y^2-1=0\)
Khai triển ra và áp dụng điều kiện có nghiệm của pt bậc 2 ẩn y
\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\\x^2+y^2+xy=3\end{cases}\left(a\ge0\right)}}\)
Do đó: \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases}}\)
Điều kiện có nghiệm là: \(\Delta=S^2-4P\ge0\)và a>=0 nên 0 =<a =< 4
Ta có: \(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)
=> \(Min_T=1\)khi x=1 và y=1 hoặc x=-1; y=-1
\(Max_T=9\)khi \(x=\sqrt{3};y=-\sqrt{3}\)hoặc \(x=-\sqrt{3};y=\sqrt{3}\)