K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Đề sai: \(x^2=bc\) phải là \(a^2=bc\)

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)

\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)

\(\Rightarrow a-ka=-b-kb\)

\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1) 

Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)

\(\Rightarrow c-kc=-a-ka\)

\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\)  ( 2)

Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)

                   \(\Rightarrow a^2=bc\left(đpcm\right)\)

11 tháng 8 2016

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(k\)nhé !!!

5 tháng 1 2019

Hộ mình nha

3 tháng 12 2019

1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)

\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)

Vậy \(x=5\)

2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)\(b=c\)\(c=a\)\(\Rightarrow a=b=c\)

3 tháng 12 2019

Câu 1:

\(2^{x+2}-96=2^x\)

\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)

\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)

\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)

\(\Rightarrow x=2\)

Câu 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)

\(\Rightarrow a=b=c\)

29 tháng 8 2016

a/

\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)

\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)

+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z

+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z

b/

\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)

=> m=y

+

29 tháng 8 2016

cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha

24 tháng 8 2017

 ta có: a+b+c=1 

<=>(a+b+c)^2=1 

<=>ab+bc+ca=0 (1) 

mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 

x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 

<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 

=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 

<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 

từ (1) và (2) ta có đpcm 

17 tháng 8 2018

mn giúp mk nha mk đg cần gấp

12 tháng 12 2016

Từ đề bai ta có

\(\frac{1a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\frac{y+z}{1bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{x+y-z-x}{1ab-ca}=\frac{y-z}{a\left(b-c\right)}\)

Tương tự ta cũng tìm được cái dãy tỷ số đó 

\(=\frac{1z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

Từ đây ta có điều phải chứng minh

13 tháng 12 2016

Ta có:

\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\frac{\left(y+z\right)}{bc}=\frac{\left(z+x\right)}{ac}=\frac{\left(x+y\right)}{ab}\)

\(\Rightarrow\frac{x+y-z-x}{ab-ac}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ac-bc}\)

\(\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)