\(\frac{x^6-3^5+3x^4-x^3+2013}{x^6-x^3-3x^2-3x+2013}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

bạn phân tích đa thức thành nhân tử ở tử thức và mẫu thức sao cho chứa nhân tử chung là x2 - x - 1 . Còn lại 2013/2012

26 tháng 9 2020

méo hiểu cái kiểu gì ?

26 tháng 9 2020

Ta có \(x^2-x-1=0\Rightarrow x^2-x=1\Rightarrow\left(x^2-x\right)^3=1\)

\(\Rightarrow x^6-3x^5+3x^4-x^3=1\)

Mặt khác \(x^2-x-1-0\Rightarrow x^2=x+1\)

\(\Rightarrow x^6=\left(x+1\right)^3=x^3+2=3x^2+3x+1\)

\(\Rightarrow P=\frac{1+2017}{1+2017}=1\)

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

13 tháng 12 2015

tick mik đi, mik tick lại

NV
6 tháng 8 2020

7/

ĐKXĐ: \(-3\le x\le\frac{2}{3}\)

\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)

\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)

\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)

Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)

\(\Rightarrow4-\sqrt{3-2x}>0\)

\(\Rightarrow VT>0\)

Phương trình vô nghiệm (bạn coi lại đề)

NV
6 tháng 8 2020

5/

\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)

6/

ĐKXĐ: ....

\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)

30 tháng 3 2018

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

30 tháng 3 2018

minh lop 5 dang chi minh muon nick cua minh

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

2 tháng 8 2019

5:x^2 +4x +5x + 20 =0

(x^2 + 4x).(5x+20)

x(x+4).5(x+4)

(x+4).(x+5)

[x+5=0 ->x=-5

[x+4=0 ->x=-4

3 tháng 8 2020

Ta có : \(Q=\frac{x^6-3x^5+3x^4-x^3+2020}{x^6-x^3-3x^2-3x+2020}\)

=> \(Q=\frac{\left(x^6-x^5-x^4\right)+\left(-2x^5+2x^4+2x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(-x^3+x^2+x\right)+\left(x^2-x-1\right)+2021}{\left(x^6-x^5-x^4\right)+\left(x^5-x^4-x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(2x^3-2x^2-2x\right)+\left(x^2-x-1\right)+2021}\)

=> \(Q=\frac{x^4\left(x^2-x-1\right)-2x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}{x^4\left(x^2-x-1\right)+x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}\)

=> \(Q=\frac{x^4.0-2x^3.0+2x^2.0-x.0+0+2021}{x^4.0+x^3.0+2x^2.0+0+2021}\)

=> \(Q=\frac{2021}{2021}=1\)