Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+5x-6=0\\ \Delta=5^2-4.3.\left(-6\right)=97\\ \Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{97}}{2}\\x_2=\dfrac{-5-\sqrt{97}}{2}\end{matrix}\right.\)
\(\left(x_1-2x_2\right).\left(2x_1-x_2\right)=2x^2_1-4x_1x_2+2x_2^2\)
\(=2.\left(\dfrac{-5+\sqrt{97}}{2}\right)^2-4.\left(\dfrac{-5+\sqrt{97}}{2}\right).\left(\dfrac{-5-\sqrt{97}}{2}\right)+2.\left(\dfrac{-5-\sqrt{97}}{2}\right)^2\\ =\left(\dfrac{-5+\sqrt{97}}{2}\right)^2-2.\left(\dfrac{-5+\sqrt{97}}{2}\right).\left(\dfrac{-5-\sqrt{97}}{2}\right)+\dfrac{\left(-5-\sqrt{97}\right)^2}{2^2}\\ =\left(\dfrac{-5+\sqrt{97}}{2}-\dfrac{-5-\sqrt{97}}{2}\right)^2\\ =\left(\dfrac{-5+\sqrt{97}+5+\sqrt{97}}{2}\right)^2\\ =\left(\dfrac{2\sqrt{97}}{2}\right)^2\\ =\left(\sqrt{97}\right)^2=97\)
x1+x2=3; x1*x2=-7
B=(x1+x2)^2-2x1x2
=9-2*(-7)=23
D=(x1+x2)^3-3x1x2(x1+x2)
=3^3-3*(-7)*3
=27+63=90
F=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=10*(-7)+69
=-1
\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
a. Em tự giải
b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)
c.
\(x_1^3+x_2^3=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)
\(\Leftrightarrow m=\dfrac{71}{9}\)
Lời giải:
Áp dụng định lý Viete cho pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=1\end{matrix}\right.\)
Khi đó:
\(A=x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3\)
\(=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)
\(=\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}(x_1+x_2-\sqrt{x_1x_2})\)
\(=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}(x_1+x_2-\sqrt{x_1x_2})\)
\(=\sqrt{3+2}(3-1)=2\sqrt{5}\)
∆=9-4=5
x1=(3+√5)/2; x2=(3-√5)/2
4x1=(√5+1)^2; 4x2=(√5-1)^2
4.A=(3+√5)(√5+1)+(3-√5)(√5-1)
=(4√5+3+5)+(4√5-3-5)=8√5
A=2√5
1a. Bạn tự giải
b/ \(\Delta=9-4\left(4m-1\right)=13-16m\)
Để pt có 2 nghiệm
\(\Leftrightarrow13-16m\ge0\Rightarrow m\le\frac{13}{16}\)
2.
\(\Delta'=\left(m+7\right)^2-\left(m^2-4\right)=14m+53\)
Để pt có 2 nghiệm \(\Rightarrow14m+53\ge0\Rightarrow m\ge-\frac{53}{14}\)
Theo Viet ta có: \(x_1+x_2=2\left(m+7\right)\)
\(\Rightarrow2\left(m+7\right)=10\Rightarrow m+7=5\Rightarrow m=-2\) (thỏa mãn)
Phương trình đã cho có hai nghiệm
<=>∆ ≥ 0
<=>(m+3)²-8m ≥ 0
<=>m²-2m+9 ≥ 0
<=>(m-1)²+8 ≥ 0 (đúng)
Vậy pt đa cho luôn có nghiệm vói mọi m € R
``````````````````
Theo viét ta có:
x1+x2=(m+3)/2
x1.x2=m/2
Khi đó:
x1+x2=5/(2x1.x2)
<=>(m+3)/2 = 5/m
<=>m²+3m=10
<=>m²+3m-10=0
<=>m=2 hoặc m=-5
Vậy m=2 và m=-5 là giá trị cần tìm
=============
b/ Ta có:
P=|x1-x2|
=>P² = (x1-x2)² = (x1+x2)²-4x1.x2
=(m+3)²/4-2m = (m²-2m+9)/4
=[(m-1)²+8]/4 ≥ 2
=>P ≥ √2
Vậy minP=√2 <=>m=1
\(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2\\x_2=1\end{matrix}\right.\)
\(C=x_1-x_2=2-1=1\)
Vậy \(C=1\)